首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   0篇
地球物理   38篇
地质学   26篇
海洋学   6篇
天文学   8篇
自然地理   8篇
  2022年   1篇
  2021年   3篇
  2020年   3篇
  2019年   3篇
  2018年   7篇
  2017年   9篇
  2016年   2篇
  2014年   2篇
  2013年   3篇
  2012年   4篇
  2011年   4篇
  2010年   5篇
  2009年   2篇
  2008年   4篇
  2007年   4篇
  2006年   6篇
  2005年   5篇
  2004年   2篇
  2003年   1篇
  2001年   1篇
  1999年   1篇
  1996年   1篇
  1991年   3篇
  1989年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1972年   1篇
  1970年   1篇
  1965年   2篇
排序方式: 共有86条查询结果,搜索用时 10 毫秒
81.
The influence of magnetic interactions on the anisotropy of magnetic susceptibility (AMS) have been largely studied by several theoretical models or experiments. Numerical models have shown that when magnetostatic interactions occur, the distributions of particles over the volume rather than their individual orientations control the AMS. We have shown recently from a comprehensive rock magnetic study and from a theoretical 2-dimensional (2-D) model that single domain particles closely packed in globule aggregates could produce strong local random interaction magnetic fields which could influence the magnetic susceptibility and decrease the degree of anisotropy. In this paper, we first present in detail this 2-D theoretical model and then we extend it to the 3-D case. The possible distribution function of the magnetostatic interaction fields comprises two extreme states: it is either isotropic or ordered. The former case corresponds to the thermal-demagnetized state while the second case corresponds to the alternating field (AF) demagnetized state. We show that when easy axes of magnetization are not uniformly distributed, the degree of anisotropy decreases as the interaction field increases in both AF- and thermal-demagnetized states in 2-D and 3-D geometry. Thus we conclude that random magnetic fields generated by a random arrangement of magnetic particles over the sample volume decrease the degree of anisotropy of AMS and may alter the magnetic fabric.  相似文献   
82.
Eclogitized material from the oceanic lithosphere are the most likely source of alkaline basalt magmas in the formation of Late Cenozoic volcanic areas on the southwestern flank of the Baikal Rift Zone. Basaltic trachyandesites of the early stage of volcanism (Pg32 ~ 28–23 Ma) are rich in high field strength elements (HFSE), P2O5, F, Zn, Ga, Sr, Sn, and light rare earth elements (LREE); they are characterized by high values of the following ratios: Fe/Mn = 72–77, Sm/Yb = 7.7–8.5, Sr/Y = 57–63, and Ga/Sc = 2.1–2.3. At this stage, magmas are formed under conditions with a 2–8% degree of partial melting of the mantle substrate enriched with the material of the eclogite source (50–70%) (Cpx/Grt = 1.5–1.7). Basaltoid magmas of the final stage of volcanism (N13–N21 ~ 6–4 Ma) are formed from melting (1.5–4%) of a less fertilized mantle (Cpx/Grt = 2.1–3.1, Fe/Mn = 62–71, Sm/Yb = 3.5–4.6, Sr/Y = 29–44, Ga/Sc = 1.0–1.4). The directed variations of the compositions of the successive basaltoid magmas, which were formed in the Late Cenozoic, create an “eclogite trace” in this area.  相似文献   
83.
This paper reports the results of the first comprehensive petrological study of mafic enclaves widespread in the products of recent (2006–2012) eruptions of Bezymianny Volcano, Kamchatka. Four types of mafic enclaves were distinguished on the basis of the composition and morphology of minerals, P–T conditions of formation of mineral assemblages, and structural and textural characteristics of the rocks. Disequilibrium assemblages of mafic enclaves indicate a complex structure of the magmatic plumbing system of the volcano, including a shallow chamber with andesite–basaltic andesite magmas and a deep reservoir filled in part with plagioclase–hornblende cumulates and fed by basic magmas with mantle harzburgite xenoliths. The mafic enclaves were formed at different levels of the magmatic plumbing system of the volcano and correspond to different degrees of mixing of interacting magmas. The most abundant enclaves were formed during magma ascent from the deep reservoir (960–1040°C, 5–9 kbar) into the shallow andesitic chamber (940–980°C). Enclaves of plagioclase–hornblende cumulates from the basic magmas feeding the deep reservoir (T > 1090°C and P > 9 kbar) are much less common.  相似文献   
84.
85.
The results of the experimental studies on creating chemical and partial thermal remanent magnetizations (or their combination), which are imparted at the initial stage of the laboratory process of the oxidation of primary magmatic titanomagnetites (Tmts) contained in the rock, are presented. For creating chemical remanent magnetization, the samples of recently erupted Kamchatka basalts were subjected to 200-h annealing in air in the temperature interval from 400 to 500°С under the action of the magnetic field on the order of the Earth’s magnetic field. After creation of this magnetization, the laboratory modeling of the Thellier–Coe and Wilson–Burakov paleointensity determination procedures was conducted on these samples. It is shown that when the primary magnetization is chemical, created at the initial stage of oxidation, and the paleointensity determined by these techniques is underestimated by 15–20% relative to its true values.  相似文献   
86.
Doklady Earth Sciences - One of the signs of “space weathering” on the Moon, including the effect of the solar wind and micrometeorite bombardment, is the formation of nanophase...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号