首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5884篇
  免费   1407篇
  国内免费   1061篇
测绘学   1689篇
大气科学   1020篇
地球物理   1679篇
地质学   1640篇
海洋学   1037篇
天文学   136篇
综合类   527篇
自然地理   624篇
  2024年   36篇
  2023年   187篇
  2022年   196篇
  2021年   230篇
  2020年   179篇
  2019年   293篇
  2018年   237篇
  2017年   253篇
  2016年   246篇
  2015年   298篇
  2014年   408篇
  2013年   316篇
  2012年   406篇
  2011年   376篇
  2010年   349篇
  2009年   368篇
  2008年   406篇
  2007年   349篇
  2006年   296篇
  2005年   276篇
  2004年   255篇
  2003年   229篇
  2002年   213篇
  2001年   229篇
  2000年   153篇
  1999年   169篇
  1998年   182篇
  1997年   138篇
  1996年   151篇
  1995年   168篇
  1994年   129篇
  1993年   103篇
  1992年   115篇
  1991年   92篇
  1990年   71篇
  1989年   78篇
  1988年   34篇
  1987年   17篇
  1986年   13篇
  1985年   9篇
  1984年   14篇
  1983年   7篇
  1982年   15篇
  1981年   8篇
  1980年   9篇
  1979年   6篇
  1965年   6篇
  1962年   5篇
  1955年   3篇
  1954年   5篇
排序方式: 共有8352条查询结果,搜索用时 125 毫秒
941.
遥感影像地表覆盖分类是地理国情监测和地理信息资源建设中至关重要的环节,利用卷积神经网络对遥感影像进行特征提取和分类,具有十分重要的科研和应用价值。为提高遥感影像的地表覆盖分类精度,在深度卷积神经网络VGGNet的基础上,采用SeLU函数作为激活函数,并将激活函数中的λ、α作为训练参数,得到改进的VGGNet,用逐层贪婪算法对网络参数初始化,并选择适当的学习次数利用迁移学习的方法对网络参数调整,以提高网络的泛化能力来提取遥感影像各类别的深层特征,从而有效进行地表覆盖分类。通过GF-1卫星影像的实验表明本文方法在地表覆盖分类精度方面的优越性。  相似文献   
942.
基于动力学方法比较分析了双精度与四精度模式下重力场模型的解算精度,主要包括缔合勒让德函数计算、数值积分器及重力场反演结果。结果显示,在勒让德函数计算方面,部分角度在双精度模式下计算至1 900阶以后会出现溢出问题,而在四精度模式下任何角度都满足精度要求,并且计算结果比双精度模式高8个量级。数值积分器Adams预测校正法积分1 d的位置和速度误差,在四精度模式下比在双精度模式下高4个量级。在精密轨道反演重力场计算方面,动力学方法在双精度及四精度模式下反演结果一致,统计其计算至60阶的累计大地水准面误差为1.29×10~(-5 )m,这是因为动力学方法的线性误差相对计算误差而言是主要误差;非线性动力学方法在四精度模式下比在双精度模式下高7个量级,其大地水准面误差分别为8.92×10~(-15) m和8.16×10~(-8) m。  相似文献   
943.
提出一种综合的多面函数参数自适应选取方法。该方法利用核函数阶数和平滑因子存在最优值以及核函数结点分布应符合高程异常变化趋势的特点,综合利用正交化算法选取核函数结点以及二维粒子群算法确定最佳阶数和平滑因子,实现多面函数参数的完全自适应选取。将该方法应用于地形起伏差异不同的2个测区,结果表明,相比传统经验性方法和部分参数自适应方法,该方法用于GPS高程拟合的精度和可靠性更高。  相似文献   
944.
基于2002~2017年三维大气再分析模型、水文模式及GRACE卫星重力数据,采用负荷格林函数和卫星重力反演方法分析青藏高原大尺度地表流体的重力效应特征。结果表明,青藏高原地区大气扣除季节项前后的重力效应峰对峰变化介于1.9~10.7 μGal和1.1~4.6 μGal,其负荷效应呈现出显著的季节性特征;土壤水和积雪扣除季节项前后的重力效应峰对峰变化介于0.9~9.9 μGal和0.7~8.3 μGal,其负荷效应呈现出显著的季节性和年际变化特征;GRACE时变重力场扣除季节项前后的重力变化峰对峰变化介于4.4~24.1 μGal和3.4~18.3 μGal,考虑观测误差、构造运动和信号泄漏误差的影响,其显著的季节性和年际变化反映了多种地表流体的综合影响。  相似文献   
945.
基于WRF模式的模拟结果,结合地面观测资料、雷达回波资料以及ECMWF ERA5再分析资料,对2010年10月1—8日发生在海南岛的一次持续性秋汛期特大暴雨过程中局地锋生与对流发展的相互作用机制进行了深入分析,发现:在海南岛秋汛期特大暴雨的锋生过程中,环境场起到主要作用。非绝热加热项F1和水平运动项F3在局地锋生的过程中贡献最大,且两者的正极大值区在强降水地区多时次重叠出现,表明非绝热加热和水平形变辐散是导致强降水区强烈锋生的主要原因。此外,模拟结果和实况观测对比分析发现,较低的凝结高度导致最强降水时段对流低层出现强潜热释放,对流区低层气团内部增暖,形成强烈锋生效应,低层强的锋生导致上升气流加速,深对流发展加强,暴雨增幅。与垂直运动有关的倾斜项F2相比,非绝热加热项F1和水平运动项F3贡献虽小,但在夜间有增大的现象,分析表明夜间暴雨区垂直速度ω水平分布的差异性对深对流的加强有重要作用。  相似文献   
946.
本文采用方差-协方差分量估计分析GPS残差时间序列噪声特性。介绍了该方法如何运用于GPS时间序列分析,详细的推导了函数模型,建立了数据处理流程。对比传统的极大似然估计,该方法可以定量计算各噪声分量的大小,并且具有计算速度快,数学模型严谨等优点。  相似文献   
947.
城市交通网络分形维数的不确定性估计、控制与分析   总被引:1,自引:0,他引:1  
长度-半径维数模型作为描述城市交通网络复杂不确定性现象的一种分形分维方法,其自身存在的不确定性往往被忽视,且相关研究更是鲜见报道。故针对该模型在分形维数测算全过程中存在的不确定性问题,本文率先开展了系统剖析、定量估计和质量控制研究。首先对数据源、矢量化处理、测算中心、尺度选择、以及分维数模型估计等一系列环节进行了不确定性估计与分析,其中首次给出了分形维数在一定置信水平下的不确定性度量区间,并依据误差传播理论对误差的传递和累积进行了描述;然后着重提出了基于LMed S(Least Median of Squares)的质量控制方法。最后通过对拉萨市的算例实验表明:道路的矢量化过程、测算中心和测算尺度的选择都会导致分维的不确定性;并在对数据质量进行控制的基础上,通过置信区间对长度-半径维数模型的不确定性进行了在一定概率水平下的首次度量;同时结合区域现状对研究结果给出了合乎实际的解释。本文在描述表征不确定性问题的分形几何和分形维数的基础上,系统地揭示了其自身不确定性的本质,不仅进一步丰富了分形分维理论,为控制其质量奠定理论基础,而且可为城市交通网络分形维数的地学应用提供可靠的科学依据。  相似文献   
948.
针对GNSS多系统组合进行PPP定位的问题,推导了GNSS观测值统一表达式;进而给出了基于UofC模型的多系统组合PPP的函数模型和随机模型;最后采用6个IGS观测站24 h观测数据对7种组合模型的PPP进行解算,并从收敛率、收敛速度和定位精度等方面进行了统计分析。实验结果表明,当观测时长为60 min时,GPS/GLONASS/BDS组合PPP收敛性能最好,收敛率为91.7%,平均收敛时间为16.1 min;而BDS PPP收敛性能最差,收敛率仅为32.7%,平均收敛时间为38.4 min。可见,多系统组合有利于提高精密单点定位的解算性能。对于定位精度,在观测时长较短时(如0.5 h),GPS/GLONASS/BDS组合PPP整体上具有最优的定位精度,(N,E)方向偏差和标准差分别为(0.3,0.5)cm和(1.9,4.3)cm;短时间内对流层参数与垂直方向的强相关性,将致使U方向精度较差。  相似文献   
949.
针对遥感影像易被非法篡改的问题,提出了一种用于篡改定位及近似恢复的遥感影像半脆弱水印方案。首先将二值伪随机矩阵作为认证水印,通过量化Contourlet变换各方向子带中绝对值最大的系数将其嵌入,然后采用影像4×4分块后的灰度平均值作为恢复水印,将其嵌入到最低有效位。水印检测不需要原始遥感影像参与,实现了盲提取。实验结果表明,算法对于噪声、JPEG压缩等合理性失真具有一定的鲁棒性,而对于恶意篡改等攻击具有脆弱性,能够实现篡改区域的精确定位和近似恢复,使恢复后的遥感影像满足基本的视觉要求,可有效保护遥感影像的安全。  相似文献   
950.
GNSS时间序列分析对大地测量和地球物理领域研究具有重要意义。梳理和总结了大地测量时间序列特别是GNSS位置时间序列的研究现状和进展。重点介绍了GNSS时间序列分析的理论和方法,并同时指出了GNSS时间序列分析中存在的不足和下一步改进的方向。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号