首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5413篇
  免费   543篇
  国内免费   157篇
测绘学   234篇
大气科学   600篇
地球物理   1984篇
地质学   2215篇
海洋学   277篇
天文学   355篇
综合类   186篇
自然地理   262篇
  2022年   6篇
  2021年   15篇
  2020年   9篇
  2019年   11篇
  2018年   436篇
  2017年   377篇
  2016年   252篇
  2015年   150篇
  2014年   120篇
  2013年   135篇
  2012年   652篇
  2011年   429篇
  2010年   122篇
  2009年   142篇
  2008年   125篇
  2007年   114篇
  2006年   139篇
  2005年   844篇
  2004年   884篇
  2003年   659篇
  2002年   182篇
  2001年   73篇
  2000年   44篇
  1999年   21篇
  1998年   13篇
  1997年   22篇
  1996年   14篇
  1995年   3篇
  1994年   4篇
  1992年   4篇
  1991年   10篇
  1990年   10篇
  1989年   9篇
  1987年   8篇
  1982年   5篇
  1981年   5篇
  1980年   6篇
  1977年   3篇
  1976年   3篇
  1975年   5篇
  1969年   3篇
  1968年   2篇
  1965年   3篇
  1963年   2篇
  1961年   2篇
  1959年   2篇
  1955年   2篇
  1954年   2篇
  1951年   2篇
  1948年   2篇
排序方式: 共有6113条查询结果,搜索用时 343 毫秒
991.
This paper deals with the counting and measuring of overlapping circular objects in binary images, a problem that arises in the mineral processing industry when estimating the distribution of bubble diameters in flotation cells in order to predict the geometallurgical performance of the flotation process. By viewing the images as realizations of a stationary planar Boolean model with circular grains and by using two-point set statistics, it is possible to jointly estimate the average number of objects per unit area and their diameter distribution. When applied to real and simulated images, this method is shown to give accurate estimates, to be robust to the presence of noise contaminating the images and of moderate drifts in the number of objects per unit area, and to speed up the processing time with respect to currently used methods. Combined, these properties serve to make the method suitable for an on-line monitoring of the flotation process.  相似文献   
992.
Potential pathways in the subsurface may allow upwardly migrating gaseous CO2 from deep geological storage formations to be released into near surface aquifers. Consequently, the availability of adequate methods for monitoring potential CO2 releases in both deep geological formations and the shallow subsurface is a prerequisite for the deployment of Carbon Capture and Storage technology. Geoelectrical surveys are carried out for monitoring a small-scale and temporally limited CO2 injection experiment in a pristine shallow aquifer system. Additionally, the feasibility of multiphase modeling was tested in order to describe both complex non-linear multiphase flow processes and the electrical behavior of partially saturated heterogeneous porous media. The suitability of geoelectrical methods for monitoring injected CO2 and geochemically altered groundwater was proven. At the test site, geoelectrical measurements reveal significant variations in electrical conductivity in the order of 15?C30?%. However, site-specific conditions (e.g., geological settings, groundwater composition) significantly influence variations in subsurface electrical conductivity and consequently, the feasibility of geoelectrical monitoring. The monitoring results provided initial information concerning gaseous CO2 migration and accumulation processes. Geoelectrical monitoring, in combination with multiphase modeling, was identified as a useful tool for understanding gas phase migration and mass transfer processes that occur due to CO2 intrusions in shallow aquifer systems.  相似文献   
993.
Land cover dynamics at the African continental scale is of great importance for global change studies. Actually, four satellite-derived land cover maps of Africa now available, e.g. ECOCLIMAP, GLC2000, MODIS and GLOBCOVER, are based on images acquired in the 2000s. This study aims at stressing the compliances and the discrepancies between these four land cover classifications systems. Each of them used different mapping initiatives and relies on different mapping standards, which supports the present investigation. In order to do a relative comparison of the four maps, a preamble was to reconcile their thematic legends into more aggregated categories after a projection into the same spatial resolution. Results show that the agreement between the four land cover products is between 56 and 69%. While all these land cover datasets show a reasonable agreement in terms of surface types and spatial distribution patterns, mapping of heterogeneous landscapes in the four products is not very successful. Land cover products based on remote sensing imagery can indeed significantly be improved by using smarter algorithms, better timing of image acquisition, improved class definitions. Either will help to improve the accuracy of future land cover maps at the African continental scale. Data producers may use the areas of spatial agreement for training area selection while users might need to verify the information in the areas of disagreement using additional data sources.  相似文献   
994.
A Kalman filter-based method combining the energy of both L1 C/A and L2C GPS signals in a combined tracking loop method to enhance performance under adverse conditions is developed. Standard tracking methods and the ionospheric effect on GPS signals are reviewed and compared to a new Kalman filter that simultaneously estimates delay, phase and total electron content by combining L1 C/A and L2C code and phase discriminator outputs. The new filter is tested and compared to standard methods for tracking L1 C/A and L2C using both simulated and real data. The new method is found to have improved sensitivity of 3 dB compared to standard L1 tracking and 4.5 dB compared to standard L2C tracking while at the same time providing an accurate estimate of the total electron content along the signal path.  相似文献   
995.
VLBI-derived troposphere parameters during CONT08   总被引:2,自引:2,他引:0  
Time-series of zenith wet and total troposphere delays as well as north and east gradients are compared, and zenith total delays (ZTD) are combined on the level of parameter estimates. Input data sets are provided by ten Analysis Centers (ACs) of the International VLBI Service for Geodesy and Astrometry (IVS) for the CONT08 campaign (12?C26 August 2008). The inconsistent usage of meteorological data and models, such as mapping functions, causes systematics among the ACs, and differing parameterizations and constraints add noise to the troposphere parameter estimates. The empirical standard deviation of ZTD among the ACs with regard to an unweighted mean is 4.6?mm. The ratio of the analysis noise to the observation noise assessed by the operator/software impact (OSI) model is about 2.5. These and other effects have to be accounted for to improve the intra-technique combination of VLBI-derived troposphere parameters. While the largest systematics caused by inconsistent usage of meteorological data can be avoided and the application of different mapping functions can be considered by applying empirical corrections, the noise has to be modeled in the stochastic model of intra-technique combination. The application of different stochastic models shows no significant effects on the combined parameters but results in different mean formal errors: the mean formal errors of the combined ZTD are 2.3?mm (unweighted), 4.4?mm (diagonal), 8.6?mm [variance component (VC) estimation], and 8.6?mm (operator/software impact, OSI). On the one hand, the OSI model, i.e. the inclusion of off-diagonal elements in the cofactor-matrix, considers the reapplication of observations yielding a factor of about two for mean formal errors as compared to the diagonal approach. On the other hand, the combination based on VC estimation shows large differences among the VCs and exhibits a comparable scaling of formal errors. Thus, for the combination of troposphere parameters a combination of the two extensions of the stochastic model is recommended.  相似文献   
996.
Cities are particularly vulnerable to climate change and climate extremes in part because they concentrate many activities, people and wealth in limited areas. As a result they represent an important scale for assessment and understanding of climate change impacts. This paper provides a conceptual and methodological framework for urban economic impact assessment of climate change. The focus of the paper is on model-based analysis of future scenarios, including a framing of uncertainty for these projections, as one valuable input into the decision-making process. The paper highlights the main assessment difficulties, methods and tools, and selected examples across these areas. A number of challenges are unique to climate change impact assessment and others are unique to the problem of working at local scales. The paper also identifies the need for additional research, including the need for more integrated and systemic approaches to address climate change as a part of the urban development challenge as well as the need to assess the economic impacts of climate change and response policy at local scale.  相似文献   
997.
We examine the space–time structure of the wind and temperature fields, as well as that of the resulting spatial temperature gradients and horizontal advection of sensible heat, in the sub-canopy of a forest with a dense overstorey in moderately complex terrain. Data were collected from a sensor network consisting of ten stations and subject to orthogonal decomposition using the multiresolution basis set and stochastic analyses including two-point correlations, dimensional structure functions, and various other bulk measures for space and time variability. Despite some similarities, fundamental differences were found in the space–time structure of the motions dominating the variability of the sub-canopy wind and temperature fields. The dominating motions occupy similar spatial, but different temporal, scales. A conceptual space–time diagram was constructed based on the stochastic analysis that includes the important end members of the spatial and temporal scales of the observed motions of both variables. Short-lived and small-scale motions govern the variability of the wind, while the diurnal temperature oscillation driven by the surface radiative transfer is the main determinant of the variability in the temperature signal, which occupies much larger time scales. This scale mismatch renders Taylor’s hypothesis for sub-canopy flow invalid and aggravates the computation of meaningful estimates of horizontal advective fluxes without dense spatial information. It may further explain the ambiguous and inconclusive results reported in numerous energy and mass balance and advection studies evaluating the hypothesis that accounting for budget components other than the change in storage term and the vertical turbulent flux improves the budget closure when turbulent diffusion is suppressed in plant canopies. Estimates of spatial temperature gradients and advective fluxes were sensitive to the network geometry and the spatial interpolation method. The assumption of linear spatial temperature gradients was not supported by the results, and leads to increased spatial and temporal variability of inferred spatial gradients and advection estimates. A method is proposed to estimate the appropriate minimum network size of wind and temperature sensors suitable for an evaluation of energy and mass balances by reducing spatial and temporal variability of the spatially sampled signals, which was estimated to be on the order of 200 m at the study site.  相似文献   
998.
Several different inventories of global and regional anthropogenic and biomass burning emissions are assessed for the 1980?C2010 period. The species considered in this study are carbon monoxide, nitrogen oxides, sulfur dioxide and black carbon. The inventories considered include the ACCMIP historical emissions developed in support of the simulations for the IPCC AR5 assessment. Emissions for 2005 and 2010 from the Representative Concentration Pathways (RCPs) are also included. Large discrepancies between the global and regional emissions are identified, which shows that there is still no consensus on the best estimates for surface emissions of atmospheric compounds. At the global scale, anthropogenic emissions of CO, NOx and SO2 show the best agreement for most years, although agreement does not necessarily mean that uncertainty is low. The agreement is low for BC emissions, particularly in the period prior to 2000. The best consensus is for NOx emissions for all periods and all regions, except for China, where emissions in 1980 and 1990 need to be better defined. Emissions of CO need better quantification in the USA and India for all periods; in Central Europe, the evolution of emissions during the past two decades needs to be better determined. The agreement between the different SO2 emissions datasets is rather good for the USA, but better quantification is needed elsewhere, particularly for Central Europe, India and China. The comparisons performed in this study show that the use of RCP8.5 for the extension of the ACCMIP inventory beyond 2000 is reasonable, until more global or regional estimates become available. Concerning biomass burning emissions, most inventories agree within 50?C80%, depending on the year and season. The large differences between biomass burning inventories are due to differences in the estimates of burned areas from the different available products, as well as in the amount of biomass burned.  相似文献   
999.
This study demonstrates that IPCC Third Assessment Report is strongly dominated by Natural sciences, especially the Earth sciences. The Social sciences are dominated by Economics. The IPCC assessment also results in the separation of the Earth, Biological and Social sciences. The integration that occurs is mainly between closely related scientific fields. The research community consequently imposes a physical and economic bias and a separation of scientific fields that the IPCC reproduces in the policy sphere. It is argued that this physical and economic bias distorts a comprehensive understanding of climate change and that the weak integration of scientific fields hinders climate change from being fully addressed as an integral environmental and social problem. If climate change is to be understood, evaluated and responded to in its fullness, the IPCC must broaden its knowledge base and challenge the anthropocentric worldview that places humans outside of nature.  相似文献   
1000.
The study reports estimates of above ground phytomass carbon pools in Indian forests for 1992 and 2002 using two different methodologies. The first estimate was derived from remote sensing based forest area and crown density estimates, and growing stock data for 1992 and 2002 and the estimated pool size was in the range 2,626–3,071 Tg C (41 to 48 Mg C ha???1) and 2,660–3,180 Tg C (39 to 47 Mg C ha???1) for 1992 and 2002, respectively. The second methodology followed IPCC 2006 guidelines and using an initial 1992 pool of carbon, the carbon pool for 2002 was estimated to be in the range of 2,668–3,112 Tg C (39 to 46 Mg C ha???1), accounting for biomass increment and removals for the period concerned. The estimated total biomass increment was about 458 Tg over the period 1992–2002. Removals from forests include mainly timber and fuel wood, whereby the latter includes large uncertainty as reported extraction is lower than actual consumption. For the purpose of this study, the annual extraction values of 23 million m3 for timber and 126 million m3 for fuel wood were used. Out of the total area, 10 million ha are plantation forests with an average productivity (3.2 Mg ha???1 year???1) that is higher than natural forests, a correction of 408 Tg C for the 10 year period was incorporated in total estimated phytomass carbon pool of Indian forests. This results in an estimate for the net sink of 4 Tg C year???1. Both approaches indicate Indian forests to be sequestering carbon and both the estimates are in agreement with recent studies. A major uncertainty in Indian phytomass carbon pool dynamics is associated with trees outside forests and with soil organic carbon dynamics. Using recent remote-sensing based estimates of tree cover and growing stock outside forests, the estimated phytomass carbon pool for trees outside forests for the year 2002, is 934 Tg C with a national average tree carbon density of 4 Mg C ha???1 in non-forest area, in contrast to an average density of 43 Mg C ha???1 in forests. Future studies will have to consider dynamics in both trees outside forests and soil for total terrestrial carbon dynamics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号