首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2045篇
  免费   248篇
  国内免费   256篇
测绘学   18篇
大气科学   168篇
地球物理   583篇
地质学   650篇
海洋学   174篇
天文学   673篇
综合类   21篇
自然地理   262篇
  2024年   6篇
  2023年   10篇
  2022年   22篇
  2021年   48篇
  2020年   65篇
  2019年   68篇
  2018年   52篇
  2017年   59篇
  2016年   52篇
  2015年   59篇
  2014年   53篇
  2013年   116篇
  2012年   64篇
  2011年   144篇
  2010年   139篇
  2009年   166篇
  2008年   196篇
  2007年   152篇
  2006年   122篇
  2005年   137篇
  2004年   118篇
  2003年   93篇
  2002年   77篇
  2001年   67篇
  2000年   74篇
  1999年   74篇
  1998年   63篇
  1997年   36篇
  1996年   29篇
  1995年   36篇
  1994年   19篇
  1993年   17篇
  1992年   15篇
  1991年   11篇
  1990年   8篇
  1989年   13篇
  1988年   15篇
  1987年   7篇
  1986年   4篇
  1985年   8篇
  1984年   6篇
  1983年   6篇
  1982年   2篇
  1981年   5篇
  1980年   3篇
  1979年   3篇
  1978年   2篇
  1977年   4篇
  1976年   3篇
  1973年   1篇
排序方式: 共有2549条查询结果,搜索用时 15 毫秒
991.
The Andean Plateau of NW Argentina is a prominent example of a high‐elevation orogenic plateau characterized by internal drainage, arid to hyper‐arid climatic conditions and a compressional basin‐and‐range morphology comprising thick sedimentary basins. However, the development of the plateau as a geomorphic entity is not well understood. Enhanced orographic rainout along the eastern, windward plateau flank causes reduced fluvial run‐off and thus subdued surface‐process rates in the arid hinterland. Despite this, many Puna basins document a complex history of fluvial processes that have transformed the landscape from aggrading basins with coalescing alluvial fans to the formation of multiple fluvial terraces that are now abandoned. Here, we present data from the San Antonio de los Cobres (SAC) area, a sub‐catchment of the Salinas Grandes Basin located on the eastern Puna Plateau bordering the externally drained Eastern Cordillera. Our data include: (a) new radiometric U‐Pb zircon data from intercalated volcanic ash layers and detrital zircons from sedimentary key horizons; (b) sedimentary and geochemical provenance indicators; (c) river profile analysis; and (d) palaeo‐landscape reconstruction to assess aggradation, incision and basin connectivity. Our results suggest that the eastern Puna margin evolved from a structurally controlled intermontane basin during the Middle Miocene, similar to intermontane basins in the Mio‐Pliocene Eastern Cordillera and the broken Andean foreland. Our refined basin stratigraphy implies that sedimentation continued during the Late Mio‐Pliocene and the Quaternary, after which the SAC area was subjected to basin incision and excavation of the sedimentary fill. Because this incision is unrelated to baselevel changes and tectonic processes, and is similar in timing to the onset of basin fill and excavation cycles of intermontane basins in the adjacent Eastern Cordillera, we suspect a regional climatic driver, triggered by the Mid‐Pleistocene Climate Transition, caused the present‐day morphology. Our observations suggest that lateral orogenic growth, aridification of orogenic interiors, and protracted plateau sedimentation are all part of a complex process chain necessary to establish and maintain geomorphic characteristics of orogenic plateaus in tectonically active mountain belts.  相似文献   
992.
Contamination of groundwater in different parts of the world is a result of natural and/or anthropogenic sources, leading to adverse effects on human health and the ecosystem. In Península Valdés, where groundwater is the only source of supply, high concentrations of As and F- were registered. Since it is a region without industrial activity, an analysis of possible natural sources of contamination is necessary. The aim of this study is to analyse the hydrological processes that determines the presence and mobilization of those elements through the analysis of the mineralogy of the aquifer sediments and the ionic water relationships. The productive aquifer, dominated by psamites, coquinas and siltstone is located between 29 and 42 m below ground surface. The hydrochemistry studied from 105 sampling points, shows that groundwater is dominated by Na-Cl ions and, in the fresh water sectors, the ionic type is Na-HCO3 to Na-Cl. In 17 of these samples, Zn, Cr, Mn, As, V, Sr, Fe, F ions were measured and As and F contents above the potability limit were recorded. These contents vary between 0.01 and 0.40 mg/L in As and between 0.31 and 4 in F- which are both associated with elevated V values. The optical petrographic microscope observations and the X-ray diffraction measurements show that the sediments are dominated by volcanic lithic fragments, volcanic glass shards and quartz, plagioclase, pyroxenes and magnetite clasts. The scanning electron microscopy, combined with the energy dispersive X-ray analysis, shows that the highest concentrations of As are associated with volcanic shards and iron oxides. The combined analysis of all these elements leads to conclude that the processes which explain the presence of those ions are a result of the interaction of groundwater with the components of the aquifer sediments. At alkaline pH, the high solubility of the amorphous silica of vitreous shards allows the release of As, V and F- ions towards the solution. Thus, adsorption-desorption processes can also control the presence of these ions in groundwater. Both As and V (in solution in the form of oxyanions) can be adsorbed by iron oxides, while F- anions have more affinity to be adsorbed by the carbonate facies, some of them re-precipitated as a result of the increase in pH. The identified hydrogeological processes provide information for the planning of water purification measures that tend to improve the water resources management in a large arid region of Patagonia.  相似文献   
993.
Better models are more effectively connected models   总被引:1,自引:0,他引:1       下载免费PDF全文
Water‐ and sediment‐transfer models are commonly used to explain or predict patterns in the landscape at scales different from those at which observations are available. These patterns are often the result of emergent properties that occur because processes of water and sediment transfer are connected in different ways. Recent advances in geomorphology suggest that it is important to consider, at a specific spatio‐temporal scale, the structural connectivity of system properties that control processes, and the functional connectivity resulting from the way those processes operate and evolve through time. We argue that a more careful consideration of how structural and functional connectivity are represented in models should lead to more robust models that are appropriate for the scale of application and provide results that can be upscaled. This approach is necessary because, notwithstanding the significant advances in computer power in recent years, many geomorphic models are still unable to represent the landscape in sufficient detail to allow all connectivity to emerge. It is important to go beyond the simple representation of structural connectivity elements and allow the dynamics of processes to be represented, for example by using a connectivity function. This commentary aims to show how a better representation of connectivity in models can be achieved, by considering the sorts of landscape features present, and whether these features can be represented explicitly in the model spatial structure, or must be represented implicitly at the subgrid scale. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
994.
The Selenga River delta (Russia) is a large (>600 km2) fluvially dominated fresh water system that transfers water and sediment from an undammed drainage basin into Lake Baikal, a United Nations Educational, Scientific, and Cultural Organization World Heritage Site. Through sedimentation processes, the delta and its wetlands provide important environmental services, such as storage of sediment‐bound pollutants (e.g., metals), thereby reducing their input to Lake Baikal. However, in the Selenga River delta and many other deltas of the world, there is a lack of knowledge regarding impacts of potential shifts in the flow regime (e.g., due to climate change and other anthropogenic impacts) on sedimentation processes, including sediment exchanges between deltaic channels and adjacent wetlands. This study uses field measurements of water velocities and sediment characteristics in the Selenga River delta, investigating conditions of moderate discharge, which have become more frequent over the past decades (at the expense of peak flows, Q > 1,350 m3 s?1). The aims are to determine if the river system under moderate flow conditions is capable of supporting sediment export from the main distributary channels of the delta to the adjacent wetlands. The results show that most of the deposited sediment outside of the deltaic channels is characterized by a large proportion of silt and clay material (i.e., <63 μm). For example, floodplain lakes function as sinks of very fine sediment (e.g., 97% of sediment by weight < 63 μm). Additionally, bed material sediment is found to be transported outside of the channel margins during conditions of moderate and high water discharge conditions (Q ≥ 1,000 m3 s?1). Submerged banks and marshlands located in the backwater zone of the delta accumulate sediment during such discharges, supporting wetland development. Thus, these regions likely sequester various metals bound to Selenga River sediment.  相似文献   
995.
Bar colonization by vegetation and subsequent island formation is a key bio-geomorphological process in fluvial landscape evolution. Here we investigate morphological and ecological evolution of river islands over timescales from single floods to decades, focusing on islands initiated by deposited trees that sprout to form vegetated patches. On a braided reach of the high-energy Tagliamento River, Italy, we monitored 30 pioneer islands of 1 to 17 years age in comparison with unvegetated bar surfaces, open areas between islands, and established island surfaces. We integrated morphological, surface sediment and vegetation properties of islands initiated by different flood events, combining evidence from remotely-sensed and ground observations, flow and climate time series. At a decadal timescale, pioneer islands aggrade rapidly to the elevation of the mean annual flood, showing a steady increase in vegetation canopy height, fining of surface sediments from predominantly gravel to silty-sand with a notable clay and organic fraction. The standing vegetation included over 130 species, with the largest number on island surfaces of intermediate elevation and flood disturbance. As islands age, standing vegetation becomes comprised mainly of competitor species with transient seed banks and typical of woodland, scrub, pasture and wetland habitats, whereas the winter seedbank is dominated on all surfaces by ruderal species with persistent seedbanks, mainly associated with aquatic, wetland, pasture, arable and wasteland habitats. At shorter timescales, the biogeomorphological trajectory of pioneer islands is initiated by large flood events that control the elevation of deposited trees, and subsequent flows that control tree survival and establishment. Island morphological evolution depends on the frequency-magnitude of sediment and seed delivery and redistribution by flood and possibly wind events, whereas island ability to retain sediments reflects the degree of vegetation establishment, which in the short-term may vary with seasonal to annual moisture supply, substrate characteristics and climatic growth conditions. © 2018 John Wiley & Sons, Ltd.  相似文献   
996.
Among the numerous environmental factors affecting plant communities in alpine ecosystems, the influence of geomorphic processes and landforms has been minimally investigated. Subjected to persistent climate warming, it is vital to understand how these factors affect vegetation properties. Here, we studied 72 vegetation plots across three sites located in the Western Swiss Alps, characterized by high geomorphological variability and plant diversity. For each plot, vascular plant species were inventoried and ground surface temperature, soil moisture, topographic variables, earth surface processes (ESPs) and landform morphodynamics were assessed. The relationships between plant communities and environmental variables were analysed using non-metric multi-dimensional scaling (NMDS) and multivariate regression techniques (generalized linear model, GLM, and generalized additive model, GAM). Landform morphodynamics, growing degree days (sum of degree days above 5°C) and mean ground surface temperature were the most important explanatory variables of plant community composition. Furthermore, the regression models for species cover and species richness were significantly improved by adding a morphodynamics variable. This study provides complementary support that landform morphodynamics is a key factor, combined with growing degree days, to explain alpine plant distribution and community composition. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd.  相似文献   
997.
A detailed geomorphological study was performed in the Atxurra-Armiña cave system (northern Iberian Peninsula) to decode landscape evolution, palaeoenvironmental changes and human use of a cave within an Inner Archaeological Context. The results show an average incision rate of the river of <0.083 mm a–1 for at least the last 419 ka, with interruptions due to sedimentary inputs. Moreover, allostratigraphic units comprising fluviokarstic deposits at the base and flowstone formation at the top have been shown to be climatically controlled, formed either during glacial–interglacial cycles or during interstadial cycles. Finally, when the cave was used by humans in the Late Magdalenian, the lower entrance was closed, and they must therefore have entered the cave through the upper entrance. To reach the sectors selected to decorate the panels, they probably travelled from the upper cave level, as the current crawlway was wider than today, according to our U/Th dating. Once these visitors reached the panels, the floor in the main gallery would have been around 15 cm lower than at present. However, the morphology of the conduit was similar; this has significant implications for understanding and interpreting the human use of the cave during the Palaeolithic.  相似文献   
998.
Numerous socio-economic activities depend on the seasonal rainfall and groundwater recharge cycle across the Central American Isthmus. Population growth and unregulated land use changes resulted in extensive surface water pollution and a large dependency on groundwater resources. This work combines stable isotope variations in rainfall, surface water, and groundwater of Costa Rica, Nicaragua, El Salvador, and Honduras to develop a regionalized rainfall isoscape, isotopic lapse rates, spatial–temporal isotopic variations, and air mass back trajectories determining potential mean recharge elevations, moisture circulation patterns, and surface water–groundwater interactions. Intra-seasonal rainfall modes resulted in two isotopically depleted incursions (W-shaped isotopic pattern) during the wet season and two enriched pulses during the mid-summer drought and the months of the strongest trade winds. Notable isotopic sub-cloud fractionation and near-surface secondary evaporation were identified as common denominators within the Central American Dry Corridor. Groundwater and surface water isotope ratios depicted the strong orographic separation into the Caribbean and Pacific domains, mainly induced by the governing moisture transport from the Caribbean Sea, complex rainfall producing systems across the N-S mountain range, and the subsequent mixing with local evapotranspiration, and, to a lesser degree, the eastern Pacific Ocean fluxes. Groundwater recharge was characterized by (a) depleted recharge in highland areas (72.3%), (b) rapid recharge via preferential flow paths (13.1%), and enriched recharge due to near-surface secondary fractionation (14.6%). Median recharge elevation ranged from 1,104 to 1,979 m a.s.l. These results are intended to enhance forest conservation practices, inform water protection regulations, and facilitate water security and sustainability planning in the Central American Isthmus.  相似文献   
999.
A one‐pot synthesis and application of cellulose‐based sensors to efficiently detect various toxic metal ions in aqueous solutions in micromolar quantities is reported. Cellulose microfibers have been functionalized with carbon disulfide in alkaline solution to form cellulose xanthate. The material detects several toxic metal ions such as copper, nickel, or cobalt ions through color change detectable by the naked eye. The optical sensor can be used as an ideal flash test for assessing the quality of drinking water.  相似文献   
1000.
This study uses Sr isotope composition (87Sr/86Sr) and Sr content of waters of the Oder, one of the largest rivers in central Europe, to fingerprint natural and anthropogenic contributions to its Sr budget and to evaluate water mixing processes in its hydrological system. It also demonstrates a simple method of quantifying natural and anthropogenic Sr inputs in the watershed. The method has potential for environmental and archaeological research because past Sr geochemistry of river water can easily be reconstructed. For the first time, a catchment‐scale impact of anthropogenic sources on the Sr budget of a middle‐size river is shown in a quantitative way. The water of the Oder is characterized by a relatively uniform Sr isotope composition, from 0.7100 to 0.7108, contrasting with strong variations in Sr concentration, from 0.25 to 1.27 mg/L. There is a general seasonal trend in variability, with waters becoming more radiogenic and dilute with respect to the Sr in the spring time. This Sr systematics differs significantly from the Sr budgets of the majority of the Oder tributaries that exhibit more radiogenic composition and systematically lower Sr concentrations. A mixing scenario in the Oder involves Sr contribution from four principal water sources: (a) shallow ground waters with Sr derived from near‐surface weathering of silicates, (b) moderately radiogenic mine waters from the Upper Silesian Coal Basin, (c) unradiogenic mine waters from the Permian sequence of the copper district, and (d) unradiogenic ground waters from shallow‐seated Palaeogene, Neogene, and Mesozoic aquifers. The Sr budget of the Oder is primarily controlled by inputs of dissolved Sr from anthropogenic sources, which overprint the natural background, controlled by geology. Thus, about 47.5% of Sr originates from agriculture, industrial, and municipal additions, 31.5% from mine water inputs, and only 21% from natural sources, that is, rock weathering and atmospheric precipitation. Reconstruction of the past Sr chemistry of the Oder reveals that its present‐day Sr isotope composition is temporary and significantly different from that of the preindustrial times.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号