首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1764篇
  免费   452篇
  国内免费   362篇
测绘学   555篇
大气科学   481篇
地球物理   440篇
地质学   500篇
海洋学   246篇
天文学   9篇
综合类   159篇
自然地理   188篇
  2024年   15篇
  2023年   63篇
  2022年   88篇
  2021年   108篇
  2020年   84篇
  2019年   104篇
  2018年   92篇
  2017年   98篇
  2016年   91篇
  2015年   105篇
  2014年   157篇
  2013年   131篇
  2012年   129篇
  2011年   143篇
  2010年   121篇
  2009年   125篇
  2008年   126篇
  2007年   96篇
  2006年   95篇
  2005年   70篇
  2004年   64篇
  2003年   63篇
  2002年   60篇
  2001年   53篇
  2000年   36篇
  1999年   36篇
  1998年   33篇
  1997年   29篇
  1996年   30篇
  1995年   18篇
  1994年   13篇
  1993年   22篇
  1992年   10篇
  1991年   20篇
  1990年   16篇
  1989年   12篇
  1988年   6篇
  1987年   3篇
  1986年   5篇
  1984年   1篇
  1981年   1篇
  1966年   1篇
  1954年   3篇
  1944年   1篇
  1936年   1篇
排序方式: 共有2578条查询结果,搜索用时 15 毫秒
1.
快速评估建筑物地震灾害信息对地震应急救援工作有着指导意义,而极化SAR具有全天候、全天时的特点,因此利用极化SAR图像提取震害信息已逐渐成为研究热点。虽然极化SAR具有丰富的极化信息,但其纹理信息不可忽略,尤其是完好的人工建筑物在图像上呈现规则的纹理特征,而倒塌建筑区域纹理分布杂乱,因此结合纹理信息也可以很好地提取建筑物信息。以2010年玉树地区的全极化SAR数据为研究对象,首先,利用Yamaguchi分解的体散射分量PV提取了SAR图像中的建筑物区域以及道路、水系等非建筑物信息,在此基础上,对相干散射矩阵T11分量中倒塌建筑物、完好建筑区域进行变差计算,根据变差曲线确定变程a后,再对建筑物区域采取窗口m*m(m=3*a)进行变差计算得到变差纹理信息,最后利用FCM算法对变差纹理信息分别提取完好建筑物和倒塌建筑物区域,为了对比分析,文章利用Yamaguchi分解的二次散射分量PD提取完好建筑物区域,与震后光学遥感图像对应样本点进行人工验证,得到完好建筑物的提取精度为80.18%,倒塌建筑物的提取精度为84.54%,道路水系的提取精度为77.58%。  相似文献   
2.
介绍了自主导航的轨道确定及时间同步观测方程。以北斗仿真全星座为对象,通过采用仿真星间及卫星与地面锚固站间观测值,进行了60 d自主导航解算,分别探讨了锚固站数量及锚固站观测连续性对北斗卫星导航系统(BDS)3类卫星自主导航精度的影响。结果表明:锚固站数量及观测连续性对RERR及CERR无影响;加入1个锚固站即可显著改进URE结果精度,继续增加锚固站数量虽然可进一步提高URE精度但其改进效果有限;锚固站观测中断时间越长,其对应自主导航精度越低。因此,在BDS自主导航运行模式下应保持较高的锚固站观测频次以保证自主导航精度;另外,锚固站数量及观测连续性对北斗系统3类卫星自主导航精度的影响无显著差异。  相似文献   
3.
4.
类型丰富、时空分辨率高的海洋探测数据,为信号分解和机器学习算法的应用提供了可能。本文针对如何建立有效的海温预测模型这一问题,使用高时空分辨率的海表温度(SST)融合产品,引入信号处理领域的集合经验模态分解(EEMD)和机器学习领域的自回归积分滑动平均模型(ARIMA)。首先利用最适于分解自然信号的EEMD方法,将海温数据分解成多个确定频率的序列;再利用ARIMA分别对各个频率的序列进行预测,最后将各个序列的预测结果进行组合。该方法在丰富数据的支撑下,比以往直接使用海温数据所建立的预测模型精度更高,为更好地进行海温预测提供了新方法。  相似文献   
5.
基准站受构造运动与非线性因素的影响,如何构建高精度、现势性强的精细区域框架是位置服务与形变分析的的关键.笔者提出顾及基准站坐标动态特性与稳定性的区域框架构建方法.以我国西部与东部某城市的多年连续运行基准站数据为例进行试算比对,试验结果表明:该方法是可行的,较好地顾及了基准站的坐标特性与非线性影响,考虑了基准站的垂直运动规律,可构建高精度的区域基准,可发现区域基准的微动态变化.  相似文献   
6.
利用北天山地区2016~2019年观测的4期流动重力观测资料,分析研究一年尺度的重力场动态变化特征,并利用小波分析方法,将不同场源深度的重力异常进行分离。通过功率谱分析,获取各阶小波重力细节对应的场源深度。研究结果表明,2017年8月9日精河MS6.6地震前,震中位于负值集中区,四阶小波重力细节显示震中附近出现明显的四象限分布;2020年1月16日库车MS5.6地震前,震中位于负值区,小波重力细节整体量值较小;功率谱估算的场源近似深度与2次地震的震源深度相近。  相似文献   
7.
2017年8月8日四川九寨沟M7.0地震是继2008年汶川M8.0地震和2013年芦山M7.0地震之后,青藏高原东缘在不到10年的时间内发生的第3个震级M7.0以上的强震,震中位于青藏高原巴颜喀拉块体东缘东昆仑断裂带东端的塔藏断裂、岷江断裂和虎牙断裂交汇部位,四川省地震局的数字强震台网共有37个台站获取了主震的三分量强震加速度记录。由于傅里叶(Fourier)变换仅能提供强震记录的频域信息,故本文在对九寨沟M7.0地震的加速度记录进行时频分析时采用了一种基于聚类经验模态分解(EEMD)的希尔伯特-黄变换(HHT)方法提取信号时频特性,通过对震中附近台站的加速度记录进行EEMD分解和希尔伯特(Hilbert)变换及谱分析,最终有效获得了信号能量的时频分布特征,量化提取了中心频率、Hilbert能量、最大振幅对应的时间等特性,并与Fourier变换进行了对比研究。研究结果表明:对于非线性的强震记录采用EEMD能够有效抑制经验模态分解(EMD)中存在的模态混叠问题,FFT谱与Hilbert边际谱相比,它在低频处会低估地震动的幅值,随着频率的增加,FFT谱又会放大其幅值。   相似文献   
8.
合理构建PM2.5浓度预测模型是科学、准确地预测PM2.5浓度变化的关键。传统PM2.5预测EEMD-GRNN模型具有较好的预测精度,但是存在过于关注研究数据本身而忽略其物理意义的不足。本研究基于南京市2014-2017年PM2.5浓度时间序列数据,分析PM2.5浓度多尺度变化特征及其对气象因子和大气污染因子的尺度响应,基于时间尺度重构进行EEMD-GRNN模型的改进与实证研究。南京市样本数据PM2.5浓度变化表现为明显的天际尺度和月际尺度,从重构尺度(天际、月际)构建GRNN模型更具有现实意义;同时,PM2.5对PM10、NO2、O3、RH、MinT等因子存在多尺度响应效应,以其作为GRNN模型中的输入变量更具有时间序列上的解释意义。改进后的EEMD-GRNN模型具有更高的PM2.5浓度预测精度,MAE、MAPE、RMSE和R2分别为6.17、18.41%、8.32和0.95,而传统EEMD-GRNN模型的模型有效性检验结果分别为8.37、27.56%、11.56、0.91。对于高浓度天(PM2.5浓度大于100 μg/m3)的预测,改进模型更是全面优于传统EEMD-GRNN模型,MAPE为12.02%,相较于传统模型提高了9.03%。  相似文献   
9.
研制了新型多功能水合物沉积物三轴试验系统,系统由供-排气模块、应力加载模块、温控模块、数据采集模块和辅助模块组成。利用泵驱动高压液体施加围压和轴压,加载方式有恒压、恒流、梯度增压、跟踪气压模式,可以实现不同条件下的水合物合成、三轴剪切。围压跟踪气压的功能使水合物生成过程中净围压不变,保证了试样初始条件一致性。根据围压液体积变化测量试样体积变形,通过设置回压泵压力变化方式控制水合物气压,可以模拟不同降压速率条件下的水合物沉积物分解变形。以泥质粉细砂和二氧化碳为材料制作了三轴试样,进行了水合物合成、三轴剪切和降压分解试验,检验了仪器的可靠性。  相似文献   
10.
利用平差模型间合理的先验信息能够显著提高解的稳定性和精度。本文基于病态模型引入等式约束条件,并采用截断奇异值法重构了系数阵以削弱其病态性;建立了修正等式约束模型,导出了病态模型的约束截断奇异值解及其偏差、方差以及均方误差公式;分析了截掉奇异值所引起解的偏差引入量与方差下降量的关系,得到了确定截断参数的条件。数值算例和病态测边网算例分析结果表明,最小二乘解严重偏离真值,500次模拟实验的平均RMSE为6.693 5,正则化解和截断奇异值解精度较最小二乘解有所提高,平均RMSE分别为0.365 8和0.365 2;本文提出的约束截断奇异值解的精度最高,与约束正则化解精度相当,其平均RMSE仅为0.057 3。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号