首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25709篇
  免费   5263篇
  国内免费   6351篇
测绘学   1339篇
大气科学   4740篇
地球物理   4314篇
地质学   13999篇
海洋学   2740篇
天文学   5223篇
综合类   1560篇
自然地理   3408篇
  2024年   63篇
  2023年   364篇
  2022年   795篇
  2021年   1026篇
  2020年   1049篇
  2019年   1233篇
  2018年   1042篇
  2017年   1079篇
  2016年   1168篇
  2015年   1254篇
  2014年   1696篇
  2013年   1856篇
  2012年   1804篇
  2011年   1927篇
  2010年   1730篇
  2009年   2091篇
  2008年   2024篇
  2007年   2084篇
  2006年   2002篇
  2005年   1691篇
  2004年   1487篇
  2003年   1281篇
  2002年   1052篇
  2001年   956篇
  2000年   781篇
  1999年   702篇
  1998年   598篇
  1997年   420篇
  1996年   378篇
  1995年   331篇
  1994年   297篇
  1993年   256篇
  1992年   188篇
  1991年   134篇
  1990年   112篇
  1989年   66篇
  1988年   85篇
  1987年   31篇
  1986年   29篇
  1985年   33篇
  1984年   25篇
  1983年   22篇
  1982年   18篇
  1981年   9篇
  1980年   14篇
  1979年   9篇
  1978年   6篇
  1977年   16篇
  1954年   3篇
  1875年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The variability of rainfall-dependent streamflow at catchment scale modulates many ecosystem processes in wet temperate forests. Runoff in small mountain catchments is characterized by a quick response to rainfall pulses which affects biogeochemical fluxes to all downstream systems. In wet-temperate climates, water erosion is the most important natural factor driving downstream soil and nutrient losses from upland ecosystems. Most hydrochemical studies have focused on water flux measurements at hourly scales, along with weekly or monthly samples for water chemistry. Here, we assessed how water and element flows from broad-leaved, evergreen forested catchments in southwestern South America, are influenced by different successional stages, quantifying runoff, sediment transport and nutrient fluxes during hourly rainfall events of different intensities. Hydrograph comparisons among different successional stages indicated that forested catchments differed in their responses to high intensity rainfall, with greater runoff in areas covered by secondary forests (SF), compared to old-growth forest cover (OG) and dense scrub vegetation (CH). Further, throughfall water was greatly nutrient enriched for all forest types. Suspended sediment loads varied between successional stages. SF catchments exported 455 kg of sediments per ha, followed by OG with 91 kg/ha and CH with 14 kg/ha, corresponding to 11 rainfall events measured from December 2013 to April 2014. Total nitrogen (TN) and phosphorus (TP) concentrations in stream water also varied with rainfall intensity. In seven rainfall events sampled during the study period, CH catchments exported less nutrients (46 kg/ha TN and 7 kg/ha TP) than SF catchments (718 kg/ha TN and 107 kg/ha TP), while OG catchments exported intermediate sediment loads (201 kg/ha TN and 23 kg/ha TP). Further, we found significant effects of successional stage attributes (vegetation structure and soil physical properties) and catchment morphometry on runoff and sediment concentrations, and greater nutrients retention in OG and CH catchments. We conclude that in these southern hemisphere, broad-leaved evergreen temperate forests, hydrological processes are driven by multiple interacting phenomena, including climate, vegetation, soils, topography, and disturbance history.  相似文献   
2.
Numerous efforts have been made to understand stemflow dynamics under different types of vegetation at the inter-event scale, but few studies have explored the stemflow characteristics and corresponding influencing factors at the intra-event scale. An in-depth investigation of the inter- and intra-event dynamics of stemflow is important for understanding the ecohydrological processes in forest ecosystems. In this study, stemflow volume (FV), stemflow funnelling ratio (FR), and stemflow ratio (F%) from Quercus acutissima and Broussonetia papyrifera trees were measured at both inter- and intra-event scales in a subtropical deciduous forest, and the driving factors, including tree species and meteorological factors were further explored. Specifically, the FV, FR and F% of Q. acutissima (52.3 L, 47.2, 9.6%) were lower than those of B. papyrifera (85.1 L, 91.2, 12.4%). The effect of tree species on FV and F% was more obvious under low intensity rainfall types. At the inter-event scale, FV had a strong positive linear correlation with rainfall amount (GP) and event duration (DE) for both tree species, whereas FR and F% had a positive logarithmic correlation with GP and DE only under high-intensity, short-duration rainfall type. FR and F% were mainly affected by wind speed and the maximum 30-min rainfall intensity under low-intensity, long-duration rainfall type. At the intra-event scale, for both tree species, the mean lag time between the start of rainfall and stemflow was the shortest under high-intensity, short-duration rainfall type, while the mean duration and amount of stemflow after rain cessation were the greatest under high-amount, long-duration rainfall type. The relationship between stemflow intensity and rainfall intensity at the 5-min interval scale also depended greatly on rainfall type. These findings can help clarify stemflow dynamics and driving factors at both inter- and intra-event scales, and also provide abundant data and parameters for ecohydrological simulations in subtropical forests.  相似文献   
3.
Dissolved pollutants in stormwater are a main contributor to water pollution in urban environments. However, many existing transport models are semi-empirical and only consider one-dimensional flows, which limit their predictive capacity. Combining the shallow water and the advection–diffusion equations, a two-dimensional physically based model is developed for dissolved pollutant transport by adopting the concept of a ‘control layer’. A series of laboratory experiments has been conducted to validate the proposed model, taking into account the effects of buildings and intermittent rainfalls. The predictions are found to be in good agreement with experimental observations, which supports the assumption that the depth of the control layer is constant. Based on the validated model, a parametric study is conducted, focusing on the characteristics of the pollutant distribution and transport rate over the depth. The hyetograph, including the intensity, duration and intermittency, of rainfall event has a significant influence on the pollutant transport rates. The depth of the control layer, rainfall intensity, surface roughness and area length are dominant factors that affect the dissolved pollutant transport. Finally, several perspectives of the new pollutant transport model are discussed. This study contributes to an in-depth understanding of the dissolved pollutant transport processes on impermeable surfaces and urban stormwater management.  相似文献   
4.
Wildfire significantly alters the hydrologic properties of a burned area, leading to increases in overland flow, erosion, and the potential for runoff-generated debris flows. The initiation of debris flows in recently burned areas is well characterized by rainfall intensity-duration (ID) thresholds. However, there is currently a paucity of data quantifying the rainfall intensities required to trigger post-wildfire debris flows, which limits our understanding of how and why rainfall ID thresholds vary in different climatic and geologic settings. In this study, we monitored debris-flow activity following the Pinal Fire in central Arizona, which differs from both a climatic and hydrogeomorphic perspective from other regions in the western United States where ID thresholds for post-wildfire debris flows are well established, namely the Transverse Ranges of southern California. Since the peak rainfall intensity within a rainstorm may exceed the rainfall intensity required to trigger a debris flow, the development of robust rainfall ID thresholds requires knowledge of the timing of debris flows within rainstorms. Existing post-wildfire debris-flow studies in Arizona only constrain the peak rainfall intensity within debris-flow-producing storms, which may far exceed the intensity that actually triggered the observed debris flow. In this study, we used pressure transducers within five burned drainage basins to constrain the timing of debris flows within rainstorms. Rainfall ID thresholds derived here from triggering rainfall intensities are, on average, 22 mm h−1 lower than ID thresholds derived under the assumption that the triggering intensity is equal to the maximum rainfall intensity recorded during a rainstorm. We then use a hydrologic model to demonstrate that the magnitude of the 15-min rainfall ID threshold at the Pinal Fire site is associated with the rainfall intensity required to exceed a recently proposed dimensionless discharge threshold for debris-flow initiation. Model results further suggest that previously observed differences in regional ID thresholds between Arizona and the San Gabriel Mountains of southern California may be attributed, in large part, to differences in the hydraulic properties of burned soils. © 2019 John Wiley & Sons, Ltd.  相似文献   
5.
Investigating the performance that can be achieved with different hydrological models across catchments with varying characteristics is a requirement for identifying an adequate model for any catchment, gauged or ungauged, just based on information about its climate and catchment properties. As parameter uncertainty increases with the number of model parameters, it is important not only to identify a model achieving good results but also to aim at the simplest model still able to provide acceptable results. The main objective of this study is to identify the climate and catchment properties determining the minimal required complexity of a hydrological model. As previous studies indicate that the required model complexity varies with the temporal scale, the study considers the performance at the daily, monthly, and annual timescales. In agreement with previous studies, the results show that catchments located in arid areas tend to be more difficult to model. They therefore require more complex models for achieving an acceptable performance. For determining which other factors influence model performance, an analysis was carried out for four catchment groups (snowy, arid, and eastern and western catchments). The results show that the baseflow and aridity indices are the most consistent predictors of model performance across catchment groups and timescales. Both properties are negatively correlated with model performance. Other relevant predictors are the fraction of snow in the annual precipitation (negative correlation with model performance), soil depth (negative correlation with model performance), and some other soil properties. It was observed that the sign of the correlation between the catchment characteristics and model performance varies between clusters in some cases, stressing the difficulties encountered in large sample analyses. Regarding the impact of the timescale, the study confirmed previous results indicating that more complex models are needed for shorter timescales.  相似文献   
6.
7.
Subsurface dams are rather effective and used for the prevention of saltwater intrusion in coastal regions around the world. We carried out the laboratory experiments to investigate the elevation of saltwater wedge after the construction of subsurface dams. The elevation of saltwater wedge refers to the upward movement of the downstream saltwater wedge because the subsurface dams obstruct the regional groundwater flow and reduce the freshwater discharge. Consequently, the saltwater wedge cannot further extend in the longitudinal direction but rises in the vertical profile resulting in significant downstream aquifer salinization. In order to quantitatively address this issue, field-scale numerical simulations were conducted to explore the influence of various dam heights, distances, and hydraulic gradients on the elevation of saltwater wedge. Our investigation shows that the upward movement of the saltwater wedge and its areal extension in the vertical domain of the downstream aquifer become more severe with a higher dam and performed a great dependence on the freshwater discharge. Furthermore, the increase of the hydraulic gradient and the dam distance from the sea boundary leads to a more pronounced wedge elevation. This phenomenon comes from the variation of the freshwater discharge due to the modification of dam height, location, and hydraulic gradient. Large freshwater discharge can generate greater repulsive force to restrain the elevation of saltwater wedge. These conclusions provide theoretical references for the behaviour of the freshwater–seawater interface after the construction of subsurface dams and help optimize the design strategy to better utilize the coastal groundwater resources.  相似文献   
8.
沈宇恒 《北京测绘》2020,(4):490-494
为了研究黄土山区地形对煤层群开采地表位移的影响,以榆林某矿为地质原型,利用数值软件模拟地表为近水平、正坡、负坡、凸面和凹面五种地形条件下煤层群开采。结果表明:黄土山区地形的变化,对煤层群开采顶板垂直应力影响不明显,对地表位移影响较大;单向坡开采,斜坡滑移引起的下沉量在坡顶与开采沉陷量形成“叠加”,在坡底形成“抵消”;在组合坡中,煤层群开采地表位移量相差很大,说明在变坡点附近地表位移较为复杂。  相似文献   
9.
张威涛  任利剑  运迎霞 《地理科学》2020,40(11):1899-1908
关注滨海城市竖向避难场所的选址可靠性问题,首先深化确立“竖向避难场所”概念;然后构建竖向避难场所选址可靠性评价模型,综合自然地理要素和建成环境要素,从与灾害直接作用相关的选址暴露性、与应急交通相关的选址敏感性、与应急服务相关的选址适应性3个维度展开,搭建3级评价指标体系;再以天津滨海新区为例、聚焦滨海城市潮洪灾害和人口安全矛盾的集核——临港城区展开实证研究,借助ArcGIS分类与可视化发现:高低可靠性选址之间具有明显的空间分异,可以分解为灾害暴露性的“近岸高?远岸低”分异、交通敏感性的“外围高?中心低”分异、服务适应性的“中心与沿河高?外围低”兼“近港高?远港低”分异。同时发现:商业设施用地选址价值较高,在高可靠性选址中占比第一;中小学和社会福利设施用地选址价值最高,在高可靠性选址中占比第二;文化科研和娱乐康体设施用地在高可靠性选址中占比最小。针对临港城区实证研究结果,提出滨海城市竖向避难场所选址及可靠性提升对策。  相似文献   
10.
及时掌握水稻的时空分布信息,对调整和优化农业生产结构至关重要。论文利用综合考虑植被物候和地表水变化的水稻自动制图方法,结合海拔、地表水体因素开展2001—2017年东北地区水稻分布的时空演变研究。通过889个地面调研点位对水稻分类结果验证,总体精度达90.66%,Kappa系数为0.8128。研究表明:① 21世纪初,东北地区水稻种植面积呈先略减后持续增加的趋势,2017年水稻种植面积达2001年的2.13倍。其中,水稻扩张面积的60%分布在三江平原,30%分布在松嫩平原,下辽河平原仅占不足5%。水稻扩张的海拔优势区间在200 m范围内,随着海拔的上升水稻扩张与地表水关系越来越密切。② 三江平原内,水稻扩张幅度在海拔30~70 m范围内逐渐增加,使优势区间从相对高度70 m缩减至40 m内,也使得分布优势逐渐趋向于距地表水体较远的区域。而松嫩平原和下辽河平原水稻种植分布的海拔优势区间始终分别保持在相对高度100 m、40 m内。③ 三江平原水稻的集中分布和急剧扩张,使水稻分布优势逐渐趋向于距地表水体远的区域,这将对地下水带来更大的压力;而松嫩平原水稻分布受地表水体影响较大,分布优势随着距地表水体距离的增加而减小。研究可为农业部门评估水资源承载力、保障农业可持续发展提供数据支撑及理论参考。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号