首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  完全免费   1篇
  地球物理   10篇
  2020年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2008年   1篇
  2007年   1篇
  2005年   2篇
  2004年   2篇
排序方式: 共有10条查询结果,搜索用时 187 毫秒
1
1.
Sole marks, which are common in turbidites, have been observed as casts at the base of the Abrigo Ignimbrite on Tenerife, Canary Islands. They have been engraved by pebble to cobble-sized lithic tools in a soft, cohesive fine-grained substrate. The casts range from long, parallel groove marks, often with the tool embedded at their termination, to short, elongate impact marks and are useful as a flow-direction marker. They were formed from a highly energetic pyroclastic flow pulse and were almost immediately infilled with ash after rapid waning of flow. Large lithic tools, which formed groove marks, were held in place under high gas and grain dynamic pressures and moved forward by their own momentum and the drag force exerted by a highly concentrated granular flow. Impact marks were formed by smaller lithic tools, which had more freedom of movement within the agitated, chaotic flow. Scour structures on the lee side of stationary lithic tools may have formed by local turbulence in their wake.Editorial responsibility: T. Druitt  相似文献
2.
Pyroclastic flow deposits of the 1991 eruption of Volcán de Colima, Mexico   总被引:1,自引:1,他引:0  
The April 16, 1991, eruption of Volcán de Colima represents a classical example of partial dome collapse with the generation of progressively longer-runout, Merapi-type pyroclastic flows that traveled up to 4 km along the El Cordoban gullies (East, Central and West). The flows filled the gullies with block-and-ash flow deposits up to 10 m thick, of which, after 7 years of erosion, only remnants remained in the El Cordoban West and East gullies. The El Cordoban Central gully, however, provided a well-preserved and incised longitudinal section of the 1991 deposits. The deposits were emplaced as proximal and distal facies, separated by a change in slope angle from >30° to <20°. The proximal facies consists of massive, clast-supported flow units (up to 1 m thick) with andesite blocks locally supported by a matrix of coarse ash and devoid of segregation structures or grading. The distal facies consists of a massive, matrix-supported deposit up to 8 m thick, which contains dispersed andesite blocks in a fine ash matrix. In the distal facies, a train of blocks marks flow-unit upper boundaries and, although sorting is poor, some grading is present. Thin, finely stratified, or dune-bedded layers of fine ash material are locally present above or below units of both facies. Sedimentologic parameters show that the size or fraction of large pyroclasts (larger than –1 ) decreases from proximal to distal facies, as the percentage of matrix (0 to 4 ) increases, especially immediately beyond the break in slope. We propose that the propagation of the Colima pyroclastic flows is critically dependent on local slope angle, the presence of erodible slope debris, and the decrease in grain size with distance from the vent. The progressive fining is probably caused by some combination of erosion, clast breakup and deposition of larger pyroclasts, and is itself influenced by the slope angle. In the proximal region, the flows moved as granular avalanches, in which interacting grains ground each other and erosion occurred to produce an overriding dilute ash cloud. The maximum runout distance of the avalanches was controlled by the angle of repose of the material, and the volume and grain size of source and eroded material. Because the slope angle is close to the repose angle for this debris, granular avalanches were not able to propagate far beyond the change in slope. If, however, an avalanche had enough mass in finer grain size fractions, at least part of the flow continued beyond the break in slope and across the volcano apron, propagating in a turbulent state and depositing surge layers, or in an otherwise settling-modified state and depositing block-and-ash flow layers.Editorial responsibility: T Druitt  相似文献
3.
Small-volume pyroclastic density currents (PDCs) are generated frequently during explosive eruptions with little warning. Assessing their hazard requires a physical understanding of their transport and sedimentation processes which is best achieved by the testing of experimental and numerical models of geophysical mass flows against natural flows and/or deposits. To this end we report on one of the most detailed sedimentological studies ever carried out on a series of pristine small-volume PDC deposits from the 1975 eruption of Ngauruhoe volcano, whose emplacement were also witnessed during eruption. Using high-resolution GPS surveys, a series of lateral excavations across the deposits, and bulk sedimentological analysis we constrained the geomorphology, internal structure and texture of the deposits with respect to laterally varying modes of deposition.  相似文献
4.
Experiments were carried out on granular flows generated by instantaneous release of gas-fluidised, bidisperse mixtures and propagating into a horizontal channel. The mixture consists of fine (< 100 μm) and coarse (> 100 μm) particles of same density, with corresponding grain size ratios of ∼ 2 to 9. Initial fluidisation of the mixture destroys the interparticle frictional contacts, and the flow behaviour then depends on the initial bed packing and on the timescale required to re-establish strong frictional contacts. At a fines mass fraction (α) below that of optimal packing (∼ 40%), the initial mixtures consist of a continuous network of coarse particles with fines in interstitial voids. Strong frictional contacts between the coarse particles are probably rapidly re-established and the flows steadily decelerate. Some internal friction reduction appears to occur as α and the grain size ratio increases, possibly due to particle rolling and the lower roughness of internal shear surfaces. Segregation only occurs at large grain size ratio due to dynamical sieving with fines concentrated at the flow base. In contrast, at α above that for optimal packing, the initial mixtures consist of coarse particles embedded in a matrix of fines. Flow velocities and run-outs are similar to that of the monodisperse fine end-member, thus showing that the coarse particles are transported passively within the matrix whatever their amount and grain size are. These flows propagate at constant height and velocity as inviscid fluid gravity currents, thus suggesting negligible interparticle friction. We have determined a Froude number of 2.61 ± 0.08 consistent with the dam-break model for fluid flows, and with no significant variation as a function of α, the grain size ratio, and the initial bed expansion. Very little segregation occurs, which suggests low intensity particle interactions during flow propagation and that active fluidisation is not taking place. Strong frictional contacts are only re-established in the final stages of emplacement and stop the flow motion. We infer that fines-rich (i.e. matrix-supported) pyroclastic flows propagate as inviscid fluid gravity currents for most of their emplacement, and this is consistent with some field data.  相似文献
5.
Kohtaro  Ujiie 《Island Arc》2005,14(1):2-11
Abstract   The 1999 Chi-Chi earthquake in Taiwan ( M w = 7.6) produced a surface rupture along the north–south-striking Chelungpu thrust fault with pure dip-slip (east side up) and left lateral strike-slip displacements. Near-field strong-motion data for the northern part of the fault illustrate a distinct lack of the high-frequency seismic radiation associated with a large slip (10–15 m) and a rapid slip velocity (2–4 m/s), suggesting a smooth seismic slip associated with low dynamic frictional resistance on the fault. A drillhole was constructed at shallow depths in the possible fault zones of the northern part of the Chelungpu Fault, which may have slipped during the 1999 earthquake. One of the zones consists of a 20-cm-thick, unconsolidated fault breccia with a chaotic texture lacking both discrete slip surfaces (e.g. Riedel shears) and grain crushing. Other possible fault zones are marked by the narrow (less than a few centimeters) gouge zone in which clayey material intrudes into the damaged zone outside of the gouge zone. These characteristic fault rock textures suggest that the slip mechanisms at shallow levels during the earthquake involved either granular flow of initially unconsolidated material or slip localization under elevated pore pressure along the narrow clayey gouge zone. Because both mechanisms lead to low dynamic frictional resistance on the fault, the rapid seismic slip in the deep portions of the fault (i.e. the source region of strong-motion radiation) could have been accommodated by frictionless slip on the shallow portions of the fault. The combination of strong-motion data and fault rock analysis suggests that smooth slip associated with low dynamic friction occurred on both the deep and shallow portions of the fault, resulting in a large slip between the source region and the surface in the northern region.  相似文献
6.
The term rockfall is often used ambiguously to describe various mass movement processes. Here we propose more precise terminology based on the physical nature of the moving mass, differentiating between two distinct types of rockfall: fragmental rockfall and rock mass fall. For both rockfall types, the current knowledge of the mechanisms controlling propagation of the mass movement are described, showing how these mechanisms can be simulated with different modelling approaches. However, we point out that almost no development has been realized concerning dynamic behaviour of the transitional processes between these two end‐member rockfall types. Some simplified means of dealing with these complications are suggested, but we emphasize that a considerable amount of fundamental methodological development remains necessary. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献
7.
The central focus of this work is to study the processes acting well below the surface of a moving rock or debris avalanche during travel over stationary substrate material. Small‐scale physical models at a linear scale of 1:104 used coal as avalanche analogue material and different granular material simulating sedimentary substrates varying in frictional resistance, thickness and relative basal boundary roughness, as well as inerodible, non‐deformable runout path conditions. Substrate materials with the least frictional resistance showed the greatest response to granular flow overriding, becoming entirely mobilized beneath and ahead of the moving mass and producing the longest runout observed with a unique deposit profile shape. With a smooth substrate basal contact, failure occurred along this plane and avalanche and substrate became coupled during runout. With a rough base, however, temporary force chains of grain contacts in the substrate prevailed longer, imparted their resistance to motion/shear into the granular flow, and the flow rear section consequently halted earlier than when moving over substrates with a weak base. Reducing substrate thickness diminished the effect of basal contact roughness on granular flow runout and deposit length. Inerodible, non‐deformable substrate conditions caused changes in granular flow behaviour from essentially en masse sliding on low‐friction surfaces to increasing granular agitation over rougher paths. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献
8.
Bedload, the transport of sediment remaining in contact with the stream bed, has mainly been studied from the perspective of the correlation between fluid driving forces and the responding sediment flux. Yet grain–grain interactions are important and bedload should also be considered as a granular phenomenon. We review progress made recently in the study of granular flows, especially on segregation and rheology, that better illuminates the nature of bedload. Granular flows may exhibit gas‐like or fluid‐like flow, or quasi‐solid deformation. All three conditions might be duplicated in bedload. Understanding of intense bedload transport occurring continuously in a layer several grains deep – typical of sand beds – might greatly benefit from results in granular physics, as illustrated by grain‐inspired bedload results. However, processes restricted to the surface of the bed, when particles move intermittently and the bed becomes structured, while characteristic in gravel‐bed channels, are not well addressed in granular physics. Mutual study of these phenomena may benefit both physics and fluvial geomorphology. We intend, therefore, to contribute to an enhanced dialogue between granular physics and bedload science communities. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献
9.
10.
The impact force on retaining structure, which is caused by granular flow comprised of dry particles originated from shallow landslide failure, still lacks systematic studies. In order to support the potential design requirement of structure used to resist this kind of impact, a series of dry granular impact experiments are conducted on one rigid barrier model. According to parametric analysis results, one nonlinear regression model is proposed to correlate total normal impact force at critical time (Fcr) with its influential parameters. Further, we complete a systematic statistics analysis and obtain a subsequent optimum regression equation based on the proposed model. According to experience and dimension balance, the equation is modified and finally transformed into one non-dimensional equation, which shows good agreement between predicted and observed results.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号