首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   519篇
  免费   45篇
  国内免费   31篇
测绘学   7篇
大气科学   16篇
地球物理   194篇
地质学   292篇
海洋学   38篇
天文学   3篇
综合类   11篇
自然地理   34篇
  2024年   1篇
  2023年   3篇
  2022年   8篇
  2021年   13篇
  2020年   6篇
  2019年   10篇
  2018年   6篇
  2017年   21篇
  2016年   22篇
  2015年   18篇
  2014年   30篇
  2013年   26篇
  2012年   10篇
  2011年   23篇
  2010年   14篇
  2009年   39篇
  2008年   42篇
  2007年   35篇
  2006年   39篇
  2005年   32篇
  2004年   23篇
  2003年   30篇
  2002年   21篇
  2001年   19篇
  2000年   12篇
  1999年   12篇
  1998年   13篇
  1997年   7篇
  1996年   10篇
  1995年   3篇
  1994年   7篇
  1993年   2篇
  1992年   6篇
  1991年   7篇
  1990年   5篇
  1988年   4篇
  1987年   3篇
  1984年   4篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1976年   2篇
排序方式: 共有595条查询结果,搜索用时 31 毫秒
1.
Catastrophic failures of many tsunami barriers along the affected coasts during the 2011 Tohoku earthquake tsunami has prompted extensive investigation into improving and revising design codes for tsunami defence structures. To date, researchers and coastal engineers are investigating to understand the failure mechanisms and to find solutions so that the structures merely remain intact in the extreme event such as tsunami. Thus, the present work is motivated to experimentally study tsunami-induced bore pressures exerted on vertical seawalls; a solid vertical wall and a porous vertical seawall that consisted of a perforated front wall and a solid rear wall. Bores with various heights and velocities were generated by using the dam-break method. A porous seawall with 20% porosity of perforated front wall was used in this study. Bore pressures exerted on the solid rear wall and chamber oscillations that occurred in the experiments were also discussed. The experimental results showed that multiple peak pressures were observed during bore run-up phase in the time series of bore impacts. A predictive equation to estimate the maximum bore pressure on a perforated seawall was developed using multiple regression analysis. The proposed equation was also compared with previous empirical formulas.  相似文献   
2.
Hydrogeochemical processes that would occur in polluted groundwater and aquifer system, may reduce the sensitivity of Sr isotope being the indicator of hydraulic fracturing flowback fluids(HFFF) in groundwater. In this paper, the Dameigou shale gas field in the northern Qaidam Basin was taken as the study area, where the hydrogeochemical processes affecting Sr isotope was analysed. Then, the model for Sr isotope in HFFF-polluted groundwater was constructed to assess the sensitivity of Sr isotope as HFFF indicator. The results show that the dissolution can release little Sr to polluted groundwater and cannot affect the εSr(the deviation of the 87 Sr/86 Sr ratio) of polluted groundwater. In the meantime, cation exchange can considerably affect Sr composition in the polluted groundwater. The Sr with low εSr is constantly released to groundwater from the solid phase of aquifer media by cation exchange with pollution of Quaternary groundwater by the HFFF and it accounts for 4.6% and 11.0% of Sr in polluted groundwater when the HFFF flux reaches 10% and 30% of the polluted groundwater, respectively. However, the Sr from cation exchange has limited impact on Sr isotope in polluted groundwater. Addition of Sr from cation exchange would only cause a 0.2% and 1.2% decrease in εSr of the polluted groundwater when the HFFF flux reaches 10% and 30% of the polluted groundwater, respectively. These results demonstrate that hydrogeochemical processes have little effect on the sensitivity of Sr isotope being the HFFF indicator in groundwater of the study area. For the scenario of groundwater pollution by HFFF, when the HFFF accounts for 5%(in volume percentage) of the polluted groundwater, the HFFF can result in detectable shifts of εSr(ΔεSr=0.86) in natural groundwater. Therefore, after consideration of hydrogeochemical processes occurred in aquifer with input of the HFFF, Sr isotope is still a sensitive indicator of the Quaternary groundwater pollution by the HFFF produced in the Dameigou shale of Qaidam Basin.  相似文献   
3.
《China Geology》2021,4(2):311-328
In order to study the migration and transformation mechanism of Hg content and occurrence form in subsurface flow zone of gold mining area in Loess Plateau and its influence on water environment, the field in-situ infiltration test and laboratory test were carried out in three typical sections of river-side loess, alluvial and proluvial strata in Tongguan gold mining area of Shaanxi Province, and the following results were obtained: (1) The source of Hg in subsurface flow zone is mainly caused by mineral processing activities; (2) the subsurface flow zone in the study area is in alkaline environment, and the residual state, iron and manganese oxidation state, strong organic state and humic acid state of mercury in loess are equally divided in dry and oxidizing environment; mercury in river alluvial or diluvial strata is mainly concentrated in silt, tailings and clayey silt soil layer, and mercury has certain stability, and the form of mercury in loess is easier to transform than the other two media; (3) under the flooding condition, most of mercury is trapped in the silt layer in the undercurrent zone where the sand and silt layers alternate with each other and the river water and groundwater are disjointed, and the migration capacity of mercury is far less than that of loess layer and alluvial layer with close hydraulic connection; (4) infiltration at the flood level accelerates the migration of pollutants to the ground; (5) the soil in the undercurrent zone is overloaded and has seriously exceeded the standard. Although the groundwater monitoring results are safe this time, relevant enterprises or departments should continue to pay attention to improving the gold extraction process, especially vigorously rectify the small workshops for illegal gold extraction and the substandard discharge of the three wastes, and intensify efforts to solve the geological environmental problems of mines left over from history. At present, the occurrence form of mercury in the undercurrent zone is relatively stable, but the water and soil layers have been polluted. The risk of disjointed groundwater pollution can not be ignored while giving priority to the treatment of loess and river alluvial landform areas with close hydraulic links. The research results will provide a scientific basis for water conservancy departments to groundwater prevention and control in water-deficient areas of the Loess Plateau.  相似文献   
4.
The presence of groundwater is strongly related to its geological and geohydrological conditions.It is,however,important to study the groundwater potential in an area before it is utilized to provide clean water.Werner-Schlumberger’s method was used to analyze the groundwater potential while hydraulic properties such as soil porosity and hydraulic conductivity were used to determine the quality and ability of the soil to allow water’s movement in the aquifer.The results show that the aquifer in the Sekara and Kemuning Muda is at a depth of more than 6 meters below the ground level with moderate groundwater potential.It is also found that the aquifer at depths of over 60 m have high groundwater potential.Moreover,soil porosity in Kemuning is found to be average while the ability to conduct water was moderate.This makes it possible for some surface water to seep into the soil while the remaining flows to the rivers and ditches.  相似文献   
5.
In petroleum industry, the difference between pore pressure (Pp) and minimum horizontal stress Sh (termed the seal or retention capacity) is of major consideration because it is often assumed to represent how close a system is to hydraulic failure and thus the maximum hydrocarbon column height that can be maintained. While Sh and Pp are often considered to be independent parameters, several studies in the last decade have demonstrated that Sh and Pp are in fact coupled. However, the nature of this coupling relationship remains poorly understood. In this paper, we explore the influences of the spatial pore pressure distribution on Sh/Pp coupling and then on failure pressure predictions and trap integrity evaluation. With analytical models, we predict the fluid pressure sustainable within a reservoir before failure of its overpressured shale cover. We verify our analytical predictions with experiments involving analogue materials and fluids. We show that hydraulic fracturing and seal breach occur for fluid pressure greater than it would be expected from conventional retention capacity. This can be explained by the impact of the fluid overpressure field in the overburden and the pressure diffusion around the reservoir on the principal stresses. We calculate that supralithostatic pressure could locally be reached in overpressured covers. We also define the retention capacity of a cover (RC) surrounding a fluid source or reservoir as the difference between the failure pressure and the fluid overpressure prevailing in shale at the same depth. In response to a localized fluid pressure rise, we show that the retention capacity does not only depend on the pore fluid overpressure of the overburden but also on the tensile strength of the cover, its Poisson’s ratio, and the depth and width of the fluid source.  相似文献   
6.
通过对《当代文学理论导读》的英汉对比分析,揭示译者对读者身份的文化误读与理论译著文本的不可读性之间的相关性。理论著作重在传达原作的思想内容,宜采取交际(而非语义)的翻译策略,可增强译作的可读性;如果没有准确预设读者的文化身份,采用语义翻译方法,则容易造成译作的晦涩难懂,不利于普通读者接受。  相似文献   
7.
水力压裂技术是油气藏尤其是页岩气开发中的核心技术,利用数值模拟方法进行压裂优化和产能预测又是水力压裂成功的关键。本文首先介绍了水力压裂技术的发展历程。然后从计算模型(二维模型、拟三维模型和全三维模型)和数值模拟方法(基于连续介质和基于非连续介质)两方面对油气藏开发领域的水力压裂计算模拟技术进行较全面的总结。最后,从以下3个方面指出现今研究的不足并提出了进一步的研究建议:(1)全三维模型的完善-全三维模型应当与真实的工程参数和监测数据结合,用于校正模型本身,而校正后的全三维模型又可预测和优化新的现场水力压裂作业; (2)数值模拟方法的选用-已有的水力压裂数值模拟方法种类繁多,需要针对各种方法的适用范围、计算效率和模拟效果等,进行全面的比较和优化; (3)页岩储层中天然裂缝网络的数值模拟-天然裂隙网络加剧了页岩储层力学性质的各向异性,同时水力裂缝沟通天然裂缝活化扩展是有利于储层的增渗增产,对压裂缝网的形态、尺寸和连通率等起着至关重要的作用。因此,数值计算过程中综合考虑页岩储层中天然裂缝与水力裂缝的相互作用,将是未来水力压裂模拟的热点。  相似文献   
8.
Microstructure and hydraulic conductivity of a compacted lime-treated soil   总被引:1,自引:0,他引:1  
Under a given compaction energy and procedure, it is known that maximum dry density of a soil is lowered due to lime addition. This modification of maximum dry density could alter the hydraulic conductivity of the soil. The main object of this study was to assess the impact of lime-stabilization on a silt soil microstructure and then on saturated hydraulic conductivity. An investigation at the microscopic level with mercury intrusion porosimetry showed that lime treatment induced the formation of a new small class, with a diameter lower than 3 × 103 Å in the compacted soil. This class is responsible for the difference in dry density between the treated and the untreated sample after compaction. It is shown that this small pores class was not altered by the compaction water content, the compaction procedure or the dry density. As in untreated soils, only the larger pores were modified by the compaction water content and the compaction procedure in the lime treated samples. The hydraulic conductivity appeared to be only related to the largest pores volume of the tested silt, regardless of lime treatment. Therefore, this study demonstrated that even if addition of lime resulted in a dramatic change of the maximum dry density of the tested silty soil, its effect on hydraulic conductivity is limited.  相似文献   
9.
This paper addresses the integral conservation of linear and angular momentum in the steady hydraulic jump in a linearly diverging channel.The flow is considered to be divided into a mainstream that conveys the total liquid discharge, and a roller where no average mass transport occurs. It is assumed that no macroscopic rheological relationship holds, so mass, momentum and angular momentum integral balances are independent relationships. Normal stresses are assumed to be hydrostatic on vertical, cylindrical surfaces. Viscous stresses are assumed to be negligible with respect to turbulent stresses. Assuming that the horizontal velocity distribution in the mainstream is uniform and that the horizontal momentum and angular momentum in the roller are negligible with respect to their mainstream counterparts, an analytical solution is obtained for the free surface profile of the flow. This solution is fundamental for finding the sequent depths and their positions. Consequently, it permits solving for the length of the jump, which is assumed to be equal to the length of the roller. Mainstream and roller thicknesses can also be derived from the present solution. This model may also be theoretically used to derive the average shear stresses exerted by the roller on the mainstream and the power losses per unit weight. This second relationship, which returns the well-known classical expression for total power loss in the jump, demonstrates that the strongly idealized mechanical model proposed here is internally consistent.  相似文献   
10.
Employing bed load formulae hydraulic geometry relations were derived for stream width, sediment transport velocity, and bed slope. The relations were examined in terms of friction factor, bed load discharge, bed load diameter, and water discharge. Two fundamental approaches to the prediction of hydraulic geometry have been developed. The first and most widely adopted approach is based on empirical equations whereas the second is based on solution of the governing equations of flow. The applied bed load formulae belong to different authors. Here, the comparison with the other derived relations is presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号