首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   1篇
  国内免费   1篇
大气科学   2篇
地球物理   1篇
地质学   4篇
海洋学   1篇
天文学   2篇
  2020年   1篇
  2016年   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2010年   1篇
  2007年   1篇
  1999年   2篇
  1982年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
The 2 to 5 km thick, sandstone-dominated (>90%) Jura Quartzite is an extreme example of a mature Neoproterozoic sandstone, previously interpreted as a tide-influenced shelf deposit and herein re-interpreted within a fluvio-tidal deltaic depositional model. Three issues are addressed: (i) evidence for the re-interpretation from tidal shelf to tidal delta; (ii) reasons for vertical facies uniformity; and (iii) sand supply mechanisms to form thick tidal-shelf sandstones. The predominant facies (compound cross-bedded, coarse-grained sandstones) represents the lower parts of metres to tens of metres high, transverse fluvio-tidal bedforms with superimposed smaller bedforms. Ubiquitous erosional surfaces, some with granule–pebble lags, record erosion of the upper parts of those bedforms. There was selective preservation of the higher energy, topographically-lower, parts of channel-bar systems. Strongly asymmetrical, bimodal, palaeocurrents are interpreted as due to associated selective preservation of fluvially-enhanced ebb tidal currents. Finer-grained facies are scarce, due largely to suspended sediment bypass. They record deposition in lower-energy environments, including channel mouth bars, between and down depositional-dip of higher energy fluvio-ebb tidal bars. The lack of wave-formed sedimentary structures and low continuity of mudstone and sandstone interbeds, support deposition in a non-shelf setting. Hence, a sand-rich, fluvial–tidal, current-dominated, largely sub-tidal, delta setting is proposed. This new interpretation avoids the problem of transporting large amounts of coarse sand to a shelf. Facies uniformity and vertical stacking are likely due to sediment oversupply and bypass rather than balanced sediment supply and subsidence rates. However, facies evidence of relative sea level changes is difficult to recognise, which is attributed to: (i) the areally extensive and polygenetic nature of the preserved facies, and (ii) a large stored sediment buffer that dampened response to relative sea-level and/or sediment supply changes. Consideration of preservation bias towards high-energy deposits may be more generally relevant, especially to thick Neoproterozoic and Lower Palaeozoic marine sandstones.  相似文献   
2.
3.
Authigenic gypsum was found in a gravity core, retrieved from the top of Mound Perseverance, a giant cold‐water coral mound in the Porcupine Basin, off Ireland. The occurrence of gypsum in such an environment is intriguing, because gypsum, a classic evaporitic mineral, is undersaturated with respect to sea water. Sedimentological, petrographic and isotopic evidence point to diagenetic formation of the gypsum, tied to oxidation of sedimentary sulphide minerals (i.e. pyrite). This oxidation is attributed to a phase of increased bottom currents which caused erosion and enhanced inflow of oxidizing fluids into the mound sediments. The oxidation of pyrite produced acidity, causing carbonate dissolution and subsequently leading to pore‐water oversaturation with respect to gypsum and dolomite. Calculations based on the isotopic compositions of gypsum and pyrite reveal that between 21·6% and 28·6% of the sulphate incorporated into the gypsum derived from pyrite oxidation. The dissolution of carbonate increased the porosity in the affected sediment layer but promoted lithification of the sediments at the sediment‐water interface. Thus, authigenic gypsum can serve as a signature for diagenetic oxidation events in carbonate‐rich sediments. These observations demonstrate that fluid flow, steered by environmental factors, has an important effect on the diagenesis of coral mounds.  相似文献   
4.
Extreme weather conditions can strongly affect agricultural production, with negative impacts that can at times be detected at regional scales. In France, crop yields were greatly influenced by drought and heat stress in 2003 and by extremely wet conditions in 2007. Reported regional maize and wheat yields where historically low in 2003; in 2007 wheat yields were lower and maize yields higher than long-term averages. An analysis with a spatial version (10?×?10?km) of the EPIC crop model was tested with regards to regional crop yield anomalies of wheat and maize resulting from extreme weather events in France in 2003 and 2007, by comparing simulated results against reported regional crops statistics, as well as using remotely sensed soil moisture data. Causal relations between soil moisture and crop yields were specifically analyzed. Remotely sensed (AMSR-E) JJA soil moisture correlated significantly with reported regional crop yield for 2002–2007. The spatial correlation between JJA soil moisture and wheat yield anomalies was positive in dry 2003 and negative in wet 2007. Biweekly soil moisture data correlated positively with wheat yield anomalies from the first half of June until the second half of July in 2003. In 2007, the relation was negative the first half of June until the second half of August. EPIC reproduced observed soil dynamics well, and it reproduced the negative wheat and maize yield anomalies of the 2003 heat wave and drought, as well as the positive maize yield anomalies in wet 2007. However, it did not reproduce the negative wheat yield anomalies due to excessive rains and wetness in 2007. Results indicated that EPIC, in line with other crop models widely used at regional level in climate change studies, is capable of capturing the negative impacts of droughts on crop yields, while it fails to reproduce negative impacts of heavy rain and excessively wet conditions on wheat yield, due to poor representations of critical factors affecting plant growth and management. Given that extreme weather events are expected to increase in frequency and perhaps severity in coming decades, improved model representation of crop damage due to extreme events is warranted in order to better quantify future climate change impacts and inform appropriate adaptation responses.  相似文献   
5.
The impacts of climate change on agricultural production systems in China   总被引:7,自引:0,他引:7  
Climate change can bring positive and negative effects on Chinese agriculture, but negative impacts tend to dominate. The annual mean surface temperature has risen about 0.5–0.8 °C. The precipitation trends have not been identified during the past 100 years in China, although the frequency and intensity of extreme weather/climate events have increased, especially of drought. Water scarcity, more frequent and serious outbreaks of insects and diseases, and soil degradation caused by climate change have impacted agro-environmental conditions. However, temperature rise prolonged the crop growth seasons and cold damages have reduced in Northeast China. The projection of climate change indicates that the surface temperature will continue to increase with about 3.9 to 6.0 °C and precipitation is expected to increase by 9 to 11 % at the end of 21st century in China. Climate warming will provide more heat and as a consequence, the boundary of the triple-cropping system (TCS) will extend northwards by as much as 200 to 300 km, from the Yangtze River Valley to the Yellow River Basin, and the current double-cropping system (DCS) will move to the central part of China, into the current single cropping system (SCS) area which will decrease in SCS surface area of 23.1 % by 2050. Climate warming will also affect the optimum location for the cultivation of China’s main crop varieties. If no measures are taken to adapt to climate changes, compared with the potential yield in 1961–1990, yields of irrigated wheat, corn and rice are projected to decrease by 2.2–6.7 %, 0.4 %–11.9 % and 4.3–12.4 % respectively in the 2050s. Climate warming will enhance potential evaporation and reduce the availability of soil moisture, thus causing a greater need for agricultural irrigation, intensifying the conflict between water supply and demand, especially in arid and semi-arid areas of China. With adequate irrigation, the extent of the reduction in yield of China’s corn and wheat can be improved by 5 % to 15 %, and rice by 5 % or so than the potential yield in 1961–1990. Adaptive measures can reduce the agricultural loss under climate change. If effective measures are taken in a timely way, then climate change in the next 30–50 years will not have a significant influence on China’s food security.  相似文献   
6.
7.
Facies models for regressive, tide‐influenced deltaic systems are under‐represented in the literature compared with their fluvial‐dominated and wave‐dominated counterparts. Here, a facies model is presented of the mixed, tide‐influenced and wave‐influenced deltaic strata of the Sego Sandstone, which was deposited in the Western Interior Seaway of North America during the Late Cretaceous. Previous work on the Sego Sandstone has focused on the medial to distal parts of the outcrop belt where tides and waves interact. This study focuses on the proximal outcrop belt, in which fluvial and tidal processes interact. Five facies associations are recognized. Bioturbated mudstones (Facies Association 1) were deposited in an offshore environment and are gradationally overlain by hummocky cross‐stratified sandstones (Facies Association 2) deposited in a wave‐dominated lower shoreface environment. These facies associations are erosionally overlain by tide‐dominated cross‐bedded sandstones (Facies Association 4) interbedded with ripple cross‐laminated heterolithic sandstones (Facies Association 3) and channelized mudstones (Facies Association 5). Palaeocurrent directions derived from cross‐bedding indicate bidirectional currents which are flood‐dominated in the lower part of the studied interval and become increasingly ebb‐directed/fluvial‐directed upward. At the top of the succession, ebb‐dominated/fluvial‐dominated, high relief, narrow channel forms are present, which are interpreted as distributary channels. When distributary channels are abandoned they effectively become estuaries with landward sediment transport and fining trends. These estuaries have sandstones of Facies Association 4 at their mouth and fine landward through heterolithic sandstones of Facies Association 3 to channelized mudstones of Facies Association 5. Therefore, the complex distribution of relatively mud‐rich and sand‐rich deposits in the tide‐dominated part of the lower Sego Sandstone is attributed to the avulsion history of active fluvial distributaries, in response to a subtly expressed allogenic change in sediment supply and relative sea‐level controls and autocyclic delta lobe abandonment.  相似文献   
8.
An unwrapped phase curve from the principal values of the phase can be computed in a simple way. The validity of the unwrapping procedure is tested by exploiting the phase information in the signal's first moment. The significance of the unwrapped answer around notches in the amplitude spectrum is seriously degraded by noise. The proposed method and the validity test are illustrated with examples.  相似文献   
9.
10.
The Fundamental plane provides a sensitive tool to measure the change in the M/L ratio of early type galaxies with redshift. The evolution of the M/L ratio is a function of the star formation history. It depends on the IMF, the formation redshift, and cosmology. Some model examples are shown, and a first result on the cluster Abell 665 at z=0.18 is given. The measurements confirm the cosmological surface brightness dimming, and imply an evolution of the (red) L/M ratio ∝ (1 + z)1.8±0.7. More data are needed to extend this result to higher redshifts, and to test the underlying assumptions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号