首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   931篇
  免费   214篇
  国内免费   206篇
测绘学   8篇
大气科学   275篇
地球物理   444篇
地质学   497篇
海洋学   13篇
天文学   1篇
综合类   24篇
自然地理   89篇
  2024年   1篇
  2023年   9篇
  2022年   16篇
  2021年   36篇
  2020年   48篇
  2019年   48篇
  2018年   27篇
  2017年   41篇
  2016年   37篇
  2015年   44篇
  2014年   47篇
  2013年   99篇
  2012年   55篇
  2011年   59篇
  2010年   50篇
  2009年   77篇
  2008年   73篇
  2007年   78篇
  2006年   67篇
  2005年   69篇
  2004年   53篇
  2003年   28篇
  2002年   41篇
  2001年   34篇
  2000年   21篇
  1999年   17篇
  1998年   22篇
  1997年   20篇
  1996年   15篇
  1995年   16篇
  1994年   22篇
  1993年   13篇
  1992年   14篇
  1991年   13篇
  1990年   9篇
  1989年   5篇
  1988年   5篇
  1987年   4篇
  1986年   6篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   3篇
  1980年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有1351条查询结果,搜索用时 15 毫秒
1.
The source and hydrochemical makeup of a stream reflects the connectivity between rainfall, groundwater, the stream, and is reflected to water quantity and quality of the catchment. However, in a semi-arid, thick, loess covered catchment, temporal variation of stream source and event associated behaviours are lesser known. Thus, the isotopic and chemical hydrographs in a widely distributed, deep loess, semi-arid catchment of the northern Chinese Loess Plateau were characterized to determine the source and hydrochemical behaviours of the stream during intra-rainfall events. Rainfall and streamflow were sampled during six hydrologic events coupled with measurements of stream baseflow and groundwater. The deuterium isotope (2H), major ions (Cl, SO42−, NO3, Ca2+, K+, Mg2+, and Na+) were evaluated in water samples obtained during rainfall events. Temporal variation of 2H and Cl measured in the groundwater and stream baseflow prior to rainfall was similar; however, the isotope compositions of the streamflow fluctuated significantly and responded quickly to rainfall events, likely due to an infiltration excess, overland dominated surface runoff during torrential rainfall events. Time source separation using 2H demonstrated greater than 72% on average, the stream composition was event water during torrential rainfall events, with the proportion increasing with rainfall intensity. Solutes concentrations in the stream had loglinear relationships with stream discharge, with an outling anomaly with an example of an intra-rainfall event on Oct. 24, 2015. Stream Cl behaved nonconservative during rainfall events, temporal variation of Cl indicated a flush and washout at the onset of small rainfall events, a dilution but still high concentration pattern in high discharge and old water dominated in regression flow period. This study indicates rainfall intensity affects runoff responses in a semi-arid catchment, and the stored water in the thick, loess covered areas was less connected with stream runoff. Solute transport may threaten water quality in the area, requiring further analysis of the performance of the eco-restoration project.  相似文献   
2.
The use of heavy machinery during opencast coal mining can result in soil compaction. Severe soil compaction has a negative impact on the transport of water and gas in the soil. In addition, rainfall intensity has traditionally been related to soil surface sealing affecting water transport. To assess the effects of rainfall intensity and compaction on water infiltration and surface runoff in an opencast coal mining area, the disturbed soils from the Antaibao opencast mine in Shanxi Province, China, were collected. Four soil columns with different bulk densities (i.e., 1.4 g cm-3, 1.5 g cm-3, 1.6 g cm-3, and 1.7 g cm-3) were designed, and each column received water five times at rainfall intensities of 23.12, 28.91, 38.54, 57.81, and 115.62 mm hr-1. The total volume of runoff, the time to start runoff, and the volumetric water contents at the depths of 5 cm, 15 cm, 25 cm, 35 cm, 45 cm, 55 cm, and 65 cm were measured. Under the same soil bulk density, high rainfall intensity reduced infiltration, increased surface runoff, and decreased the magnitude of change in the volumetric water contents at different depths. Under the same rainfall intensity, the soil column with a high bulk density showed relatively low water infiltration. Treatments 3 (1.6 g cm-3) and 4 (1.7 g cm-3) had very small changes in volumetric water contents of the profiles even under a lower rainfall intensity. Severe soil compaction was highly prone to surface runoff after rainfall. Engineering and revegetation measures are available to improve compacted soil quality in dumps. Our results provide a theoretical basis for the management of land reclamation in opencast coal mine areas.  相似文献   
3.
Infiltration into frozen soil plays an important role in soil freeze–thaw and snowmelt-driven hydrological processes. To better understand the complex thermal energy and water transport mechanisms involved, the influence of antecedent moisture content and macroporosity on infiltration into frozen soil was investigated. Ponded infiltration experiments on frozen macroporous and non-macroporous soil columns revealed that dry macroporous soil produced infiltration rates reaching 103 to 104 mm day−1, two to three orders of magnitude larger than dry non-macroporous soil. Results suggest that rapid infiltration and drainage were a result of preferential flow through initially air-filled macropores. Using recorded flow rates and measured macropore characteristics, calculations indicated that a combination of both saturated flow and unsaturated film flow likely occurred within macropores. Under wet conditions, regardless of the presence of macropores, infiltration was restricted by the slow thawing rate of pore ice, producing infiltration rates of 2.8 to 5.0 mm day−1. Reduced preferential flow under wet conditions was attributed to a combination of soil swelling, due to smectite-rich clay (that reduced macropore volume), and pore ice blockage within macropores. In comparison, dry soil column experiments demonstrated that macropores provided conduits for water and thermal energy to bypass the frozen matrix during infiltration, reducing thaw rates compared with non-macroporous soils. Overall, results showed the dominant control of antecedent moisture content on the initiation, timing, and magnitude of infiltration and flow in frozen macroporous soils, as well as the important role of macropore connectivity. The study provides an important data set that can aid the development of hydrological models that consider the interacting effects of soil freeze–thaw and preferential flow on snowmelt partitioning in cold regions.  相似文献   
4.
岩溶水是指赋存于岩溶孔隙中的地下水,是我国南方生产生活主要用水来源.随着社会对水资源需求的逐步扩大,岩溶水资源的开发利用越发重要.通过定期监测岳麓山泉水流量、电导率、pH值,结合岳麓山岩土层性质和长沙市降雨量,采用统计分析和Spearman秩相关系数法对泉水流量变化和泉水水质定性评价进行研究.研究结果表明,大气降雨对岩溶水进行补给从而使泉水流量增大,泉水流量的改变除与降雨量有关外,还受土壤入渗率和降雨时长的影响.采用Spearman秩相关系数法可定量计算电导率与时间的相关性,间接判断周围环境对泉水水质影响的难易程度,有利于识别电导率代表性位置泉眼,更好地监测和评价岩溶水.土壤酸沉降污染严重或酸雨频繁地区易导致岩溶水pH值呈酸性.对泉水流量和水质的研究有利于科学开发利用岩溶水资源.  相似文献   
5.
ABSTRACT

The purpose of this study is to examine local level spatiotemporal rainfall and temperature variability in drought-prone districts of rural Sidama, Central Rift Valley region of Ethiopia. The study used 129 gridded monthly rainfall and temperature data of 32 years (1983–2014). The gridded rainfall and temperature records were encoded into GIS software and evaluated through different statistical and geospatial techniques. Mann-Kendal rank test and F distribution tests were used to test temporal and spatial statistical significance, respectively, of the data. The analysis revealed that Belg and Kiremt are the main rainfall seasons, constituting 81% of the annual rainfall. Although annual, Kiremt, and Belg rainfall amounts appear to have decreased over time, the decreasing trend is statistically significant only for Belg rainfall records. On the other hand, rainfall standard anomaly results indicated seven droughts of different magnitudes: one extreme, two severe, and four moderate. The study also revealed increasing temperature trends over the years under consideration that are statistically significant. The findings of this study on rainfall contradict other findings obtained around the study area. Thus, climate change adaptations need to focus on location-specific climate data analysis so that the intended adaptive interventions can be successful.  相似文献   
6.
Biocrust effects on soil infiltration have attracted increasing attention in dryland ecosystems, but their seasonal variations in infiltrability have not yet been well understood. On the Chinese Loess Plateau, soil infiltrability indicated by saturated hydraulic conductivity (Ks) of biocrusts and bare soil, both on aeolian sand and loess soil, was determined by disc infiltrometer in late spring (SPR), midsummer (SUM), and early fall (FAL). Then their correlations with soil biological and physiochemical properties and water repellency index (RI) were analysed. The results showed that the biocrusts significantly decreased Ks both on sand during SPR, SUM, and FAL (by 43%, 66%, and 35%, respectively; P < .05) and on loess (by 42%, 92%, and 10%, respectively; P <.05). As compared with the bare soil, the decreased Ks in the biocrusted surfaces was mostly attributed to the microorganism biomass and also to the increasing content of fine particles and organic matter. Most importantly, both the biocrusts and bare soil exhibited significant (F ≥ 11.89, P ≤ .003) seasonal variations in Ks, but their patterns were quite different. Specifically, the Ks of bare soil gradually decreased from SPR to SUM (32% and 42% for sand and loess, respectively) and FAL (29% and 39%); the Ks of biocrusts also decreased from SPR to SUM (59% and 92%) but then increased in FAL (36% and 588%). Whereas the seasonal variations in Ks of the biocrusts were closely correlated with the seasonal variations in RI, the RI values were not high enough to point at hydrophobicity. Instead of that, the seasonal variations of Ks were principally explained by the changes in the crust biomass and possibly by the microbial exopolysaccharides. We conclude that the biocrusts significantly decreased soil infiltrability and exhibited a different seasonal variation pattern, which should be carefully considered in future analyses of hydropedological processes.  相似文献   
7.
Groundwater transit time is an essential hydrologic metric for groundwater resources management. However, especially in tropical environments, studies on the transit time distribution (TTD) of groundwater infiltration and its corresponding mean transit time (mTT) have been extremely limited due to data sparsity. In this study, we primarily use stable isotopes to examine the TTDs and their mTTs of both vertical and horizontal infiltration at a riverbank infiltration area in the Vietnamese Mekong Delta (VMD), representative of the tropical climate in Asian monsoon regions. Precipitation, river water, groundwater, and local ponding surface water were sampled for 3 to 9 years and analysed for stable isotopes (δ18O and δ2H), providing a unique data set of stable isotope records for a tropical region. We quantified the contribution that the two sources contributed to the local shallow groundwater by a novel concept of two‐component lumped parameter models (LPMs) that are solved using δ18O records. The study illustrates that two‐component LPMs, in conjunction with hydrological and isotopic measurements, are able to identify subsurface flow conditions and water mixing at riverbank infiltration systems. However, the predictive skill and the reliability of the models decrease for locations farther from the river, where recharge by precipitation dominates, and a low‐permeable aquitard layer above the highly permeable aquifer is present. This specific setting impairs the identifiability of model parameters. For river infiltration, short mTTs (<40 weeks) were determined for sites closer to the river (<200 m), whereas for the precipitation infiltration, the mTTs were longer (>80 weeks) and independent of the distance to the river. The results not only enhance the understanding of the groundwater recharge dynamics in the VMD but also suggest that the highly complex mechanisms of surface–groundwater interaction can be conceptualized by exploiting two‐component LPMs in general. The model concept could thus be a powerful tool for better understanding both the hydrological functioning of mixing processes and the movement of different water components in riverbank infiltration systems.  相似文献   
8.
Qihua Ran  Feng Wang  Jihui Gao 《水文研究》2020,34(23):4526-4540
Rainfall characteristics are key factors influencing infiltration and runoff generation in catchment hydrology, particularly for arid and semiarid catchments. Although the effect of storm movement on rainfall-runoff processes has been evaluated and emphasized since the 1960s, the effect on the infiltration process has barely been considered. In this study, a physically based distributed hydrological model (InHM) was applied to a typical semi-arid catchment (Shejiagou, 4.26 km2) located in the Loess Plateau, China, to investigate the effect of storm movement on infiltration, runoff and soil erosion at the catchment scale. Simulations of 84 scenarios of storm movement were conducted, including storms moving across the catchment in both the upstream and downstream directions along the main channel, while in each direction considering four storm moving speeds, three rainfall depths and two storm ranges. The simulation results showed that, on both the hillslopes facing downstream (facing south) and in the main channel, the duration of the overland flow process under the upstream-moving storms was longer than that under the downstream-moving storms. Thus, the duration and volume of infiltration under upstream-moving storms were larger in these areas. For the Shejiagou catchment, as there are more hillslopes facing downstream, more infiltration occurred under the upstream-moving storms than the downstream-moving storms. Therefore, downstream-moving storms generated up to 69% larger total runoff and up to 351% more soil loss in the catchment than upstream-moving storms. The difference in infiltration between the storms moving upstream and downstream decreased as the storm moving speed increased. The relative difference in total runoff and sediment yield between the storms moving upstream and downstream decreased with increasing rainfall depth and storm speed. The results of this study revealed that the infiltration differences under moving storms largely influenced the total runoff and sediment yield at the catchment scale, which is of importance in runoff prediction and flood management. The infiltration differences may be a potential factor leading to different groundwater, vegetation cover and ecology conditions for the different sides of the hillslopes.  相似文献   
9.
在求解非饱和态土中水分入渗问题时,水力函数是体积含水率或者吸力的函数,致使其控制方程呈现出强非线性的特征,进而使得其求解变得十分困难。基于水分在土体介质中流动耗时取极值路径的选择这一假定,引入时间泛函,基于变分法原理将水平入渗问题转化为泛函极值问题。通过求解Euler–Lagrange方程,结合边界条件,得到非线性瞬态水平入渗问题的显式解析解。结合Brooks-Corey型水力函数,显式地求解出该类型非饱和态土的体积含水率发展分布规律。通过计算4种不同类型土体的水平入渗规律,将求解结果与已有结果以及数值结果进行对比,验证了该方法的有效性。结果表明:体积含水率分布与位置距离和湿润峰距离比值呈幂函数关系,指数取决于土-水特征曲线的形状参数;初始条件与边界条件会对体积含水率分布造成不同程度的影响。  相似文献   
10.
肖婧  王兵 《水科学进展》2021,31(6):820-831
为研究黄土丘陵沟壑区多种因素对撂荒草地入渗特征的影响,采用野外自然降雨观测法,研究不同降雨特征(降雨量、平均雨强、降雨历时和最大30 min雨强(I30))、土壤前期含水量、坡长(10 m、20 m、30 m、40 m和50 m)和植被盖度条件下土壤入渗特征差异,通过灰色关联度法判断影响撂荒草地入渗特征的主导因子。结果表明:①入渗量随降雨量、降雨历时和I30增加而增大(R2>0.55,P<0.01);入渗补给系数随降雨量、I30和平均雨强增大而减小(R2>0.12,P<0.05);平均入渗率随降雨强度、I30增加而递增(R2>0.53,P<0.01)。②入渗量和平均入渗率随前期含水量增加而减少,入渗补给系数随之增加而增大(R2>0.13,P<0.05)。③入渗量、入渗补给系数和平均入渗率总体随坡长增加而增大(R2>0.56,P<0.01),但在坡长30 m和40 m之间存在临界坡长。④在入渗效率较高的情况下,植被对土壤入渗的影响并不显著,降雨特征和坡长成为主导因子。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号