首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   6篇
  国内免费   9篇
地球物理   3篇
地质学   40篇
海洋学   1篇
综合类   2篇
  2024年   1篇
  2021年   2篇
  2020年   3篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2015年   3篇
  2014年   1篇
  2013年   3篇
  2011年   2篇
  2009年   2篇
  2008年   3篇
  2007年   5篇
  2006年   2篇
  2003年   3篇
  2002年   1篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
  1989年   1篇
  1984年   1篇
排序方式: 共有46条查询结果,搜索用时 15 毫秒
1.
《Resource Geology》2018,68(3):326-335
Fluid inclusion microthermometry was conducted on late‐stage barren comb quartz and the latest stibnite at the Hishikari deposit to characterize the hydrothermal activity responsible for vein formation. Eight fluid inclusion assemblages (i.e. fluid inclusions trapped at the same time, ‘FIAs’) were studied to determine the formation fluid temperatures and salinities for the comb quartz in the Shosen No. 2 vein, Sanjin ore zone, and the stibnite in the Seisen No. 1–1 vein, Yamada ore zone. The average homogenization temperatures (the formation temperatures) of the seven FIAs from the comb quartz were between 207 and 230°C, while the average homogenization temperature (the formation temperature) of an FIA from the stibnite was 113°C. The measured fluid salinities of the seven FIAs from the comb quartz were low, ranging between 0.0 and 1.1 wt% NaCl equiv., indicating that dilute fluids were responsible for the comb quartz formation. By comparison with previous microthermometric data, the formation temperatures of the studied comb quartz were higher than those of columnar adularia and comb quartz at most other veins (generally around 200°C) but were similar to those of columnar adularia at Keisen veins (230°C) in the same ore zone. The higher formation temperatures both in the Shosen and the Keisen veins in the Sanjin ore zone indicate that the fractures corresponding to the vein system at the Sanjin ore zone were main conduits for hot ascending fluids. The low formation temperature of stibnite in the latest stage (113°C) indicates that stibnite precipitation occurred during a waning stage of hydrothermal activity. Combined with previous thermodynamic data on antimony solubilities, the large discrepancy between the formation temperature of the comb quartz (200–230°C) and that of the stibnite suggests that the stibnite may have precipitated as a result of a drastic cooling of the hydrothermal system.  相似文献   
2.
The Lufilian foreland is a triangular-shaped area located in the SE of the Democratic Republic of Congo and to the NE of the Lufilian arc, which hosts the well-known Central African Copperbelt. The Lufilian foreland recently became an interesting area with several vein-type (e.g., Dikulushi) and stratiform (e.g., Lufukwe and Mwitapile) copper occurrences. The Lufilian foreland stratiform Cu mineralization is, to date, observed in sandstone rock units belonging to the Nguba and Kundelungu Groups (Katanga Supergroup).The Mwitapile sandstone-hosted stratiform Cu prospect is located in the north eastern part of the Lufilian foreland. The host rock for the Cu mineralization is the Sonta Sandstone of the Ngule Subgroup (Kundelungu Group). A combined remote sensing, petrographic and fluid inclusion microthermometric analysis was performed at Mwitapile and compared with similar analysis previously carried out at Lufukwe to present a metallogenic model for the Mwitapile- and Lufukwe-type stratiform copper deposits. Interpretation of ETM+ satellite images for the Mwitapile prospect and the surrounding areas indicate the absence of NE–SW or ENE–WSW faults, similar to those observed controlling the mineralization at Lufukwe. Faults with these orientations are, however, present to the NW, W, SW and E of the Mwitapile prospect. At Mwitapile, the Sonta Sandstone host rock is intensely compacted, arkosic to calcareous with high silica cementation (first generation of authigenic quartz overgrowths). In the Sonta Sandstone, feldspar and calcite are present in disseminated, banded and nodular forms. Intense dissolution of these minerals caused the presence of disseminated rectangular, pipe-like and nodular dissolution cavities. Sulfide mineralization is mainly concentrated in these cavities. The hypogene sulfide minerals consist of two generations of pyrite, chalcopyrite, bornite and chalcocite, separated by a second generation of authigenic quartz overgrowth. The hypogene sulfide minerals are replaced by supergene digenite and covellite. Fluid inclusion microthermometry on the first authigenic quartz phase indicates silica precipitation from an H2O–NaCl–CaCl2 fluid with a minimum temperature between 111 and 182 °C and a salinity between 22.0 and 25.5 wt.% CaCl2 equiv. Microthermometry on the second authigenic quartz overgrowths and in secondary trails related to the mineralization indicate that the mineralizing fluid is characterized by variable temperatures (Th = 120 to 280 °C) and salinities (2.4 to 19.8 wt.% NaCl equiv.) and by a general trend of increasing temperatures with increasing salinities.Comparison between Mwitapile and Lufukwe indicates that the stratiform Cu mineralization in the two deposits is controlled by similar sedimentary, diagenetic and structural factors and likely formed from a similar mineralizing fluid. A post-orogenic timing is proposed for the mineralization in both deposits. The main mineralization controlling factors are grain size, clay and pyrobitumen content, the amount and degree of feldspar and/or calcite dissolution and the presence of NE–SW to ENE–WSW faults. The data support a post-orogenic fluid-mixing model for the Mwitapile- and Lufukwe-type sandstone-hosted stratiform Cu deposits, in which the mineralization is related to the mixing between a Cu-rich hydrothermal fluid, with a temperature up to 280 °C and a maximum salinity of 19.8 wt.% NaCl equiv., with a colder low salinity reducing fluid present in the sandstone host rock. The mineralizing fluid likely migrated upwards to the sandstone source rocks along NE–SW to ENE–WSW orientated faults. At Lufukwe, the highest copper grades at surface outcrops and boreholes were found along and near to these faults. At Mwitapile, where such faults are 2 to 3 km away, the Cu grades are much lower than at Lufukwe. Copper precipitation was possibly promoted by reduction from pre-existing hydrocarbons and non-copper sulfides and by the decrease in fluid salinity and temperature during mixing. Based on this research, new Cu prospects were proposed at Lufukwe and Mwitapile and a set of recommendations for further Cu exploration in the Lufilian foreland is presented.  相似文献   
3.
山东玲珑金矿床成矿流体地球化学特征   总被引:3,自引:0,他引:3  
玲珑金矿床第一成矿阶段与含金黄铁矿共生的石英中主要发育4种类型的原生流体包裹体:Ⅰ气液两相,Ⅱ含CO2三相,ⅢCO2,Ⅳ单液相包裹体。流体包裹体成分激光拉曼光谱分析及测温结果显示:①Ⅰa型包体,气液比10%~15%,均一温度为162.7~235.6℃,w(NaCl)(盐度)为4.65%~7.59%,气相平均摩尔分数为:H2O 96.48%,CO22.4%;②Ⅰb型包体,气液比30%~45%,均一温度266.9~349.2℃,w(NaCl)为10.8%~13.4%,气相平均摩尔分数为H2O 69.75%,CO224.74%;③Ⅱ型含CO2包体,CO2相所占比例为20%~90%,其均一温度为193.5~321.6℃,w(NaCl)2.9%~5.3%,CO2相中,H2O的摩尔分数为27.72%,CO2为70.6%。包裹体成分分析及测温结果综合研究认为,玲珑金矿成矿过程中存在大气降水热液与地幔来源流体的混合作用,前者与从流体中分离出的富CO2流体混合,以不同比例被捕获形成Ⅱ型包体;而与分异出CO2后的CO2不饱和地幔流体混合,被捕获形成Ⅰb型包体。两种流体混合导致的含矿热液物化条件变化对金的沉淀成矿具有重要意义。  相似文献   
4.
Infrared microthermometry of opaque minerals has revealed that temperatures of phase changes vary with the infrared light source intensity, resulting in an overestimate of fluid salinities and an underestimate of homogenization temperatures. Failing to recognize this analytical artifact during infrared microthermometry may result in meaningless geological models. A fluid inclusion investigation on enargite from a high-sulfidation epithermal deposit is used as an example to document this. Fluid salinities obtained during an early investigation ranged between 6.3 and 20.4 wt.% NaCl, which were interpreted as intense boiling or as evidence for the involvement of a magmatic brine during ore formation. Fluid inclusion salinities obtained with improved analytical settings, i.e. low light intensities, fall between 1.1 and 1.7 wt.% NaCl and are in better agreement with fluid salinities obtained in quartz from similar deposits, and recent modeling suggesting vapor transport of Au and Cu from deep porphyry-Cu environments to shallower high-sulfidation epithermal deposits.  相似文献   
5.
Abstract. Near-infrared (NIR) and visible light microthermometry was applied to the fluid inclusions in sphalerite from a possible southeast extension of the Toyoha polymetallic deposit. Sphalerite occurs as euhedral-subhedral crystals or collo-form aggregates with a variety of color, which contain a well-developed growth banding. Combined with morphological observations, fluid inclusions in dark-colored sphalerite were examined using a near-infrared light microscopic technique, whereas those in light-colored sphalerite and quartz were examined by a conventional visible light microscopy.
Salinities of fluid inclusions in dark-colored sphalerite have a wide variation (1.0–10.3 wt % NaCl equiv.) compared to that in light-colored sphalerite and quartz (0.0–3.4 wt % NaCl equiv.). These variations suggest that the conventional microthermometric data from light-colored sphalerite and quartz were inadequate to interpret the ore formation process. Dark-colored colloform sphalerite and a dark core of subhedral sphalerite formed from high-salinity fluids (6.5–10.3 wt % NaCl equiv.) under highly supersaturated conditions with respect to sphalerite.
The NIR and visible light microthermometry of fluid inclusions in sphalerite combined with its morphological observations is an invaluable method to infer the formation conditions of sphalerite. The NIR and visible light microthermometry is useful to reveal how the nature of ore fluids changed with time.  相似文献   
6.
The Quaternary Takidani Granodiorite (Japan Alps) is analogous to the type of deep-seated (3–5 km deep) intrusive-hosted fracture network system that might support (supercritical) hot dry/wet rock (HDR/HWR) energy extraction. The I-type Takidani Granodiorite comprises: porphyritic granodiorite, porphyritic granite, biotite-hornblende granodiorite, hornblende-biotite granodiorite, biotite-hornblende granite and biotite granite facies; the intrusion has a reverse chemical zonation, characterized by >70 wt% SiO2 at its inferred margin and <67 wt% SiO2 at the core. Fluid inclusion evidence indicates that fractured Takidani Granodiorite at one time hosted a liquid-dominated, convective hydrothermal system, with <380°C, low-salinity reservoir fluids at hydrostatic (mesothermal) pressure conditions. ‘Healed’ microfractures also trapped >600°C, hypersaline (35 wt% NaCleq) fluids of magmatic origin, with inferred minimum pressures of formation being 600–750 bar, which corresponds to fluid entrapment at 2.4–3.0 km depth. Al-in-hornblende geobarometry indicates that hornblende crystallization occurred at about 1.45 Ma (7.7–9.4 km depth) in the (marginal) eastern Takidani Granodiorite, but later (at 1.25 Ma) and shallower (6.5–7.0 km) near the core of the intrusion. The average rate of uplift across the Takidani Granodiorite from the time of hornblende crystallization has been 5.1–5.9 mm/yr (although uplift was about 7.5 mm/yr prior to 1.2 Ma), which is faster than average uplift rates in the Japan Alps (3 mm/yr during the last 2 million years). A temperature–depth–time window, when the Takidani Granodiorite had potential to host an HDR system, would have been when the internal temperature of the intrusive was cooling from 500°C to 400°C. Taking into account the initial (7.5 mm/yr) rate of uplift and effects of erosion, an optimal temperature–time–depth window is proposed: for 500°C at 1.54–1.57 Ma and 5.2±0.9 km (drilling) depth; and 400°C at 1.36–1.38 Ma and 3.3±0.8 km (drilling) depth, which is within the capabilities of modern drilling technologies, and similar to measured temperature–depth profiles in other active hydrothermal systems (e.g. at Kakkonda, Japan).  相似文献   
7.
通过对胶东金成矿区郭家岭岩体中熔融包裹体、含石盐子晶包裹体、CO2三相包裹体和H2O两相包裹体的显微测温,结果表明,该岩体在岩浆结晶晚期发生过高盐度流体与硅酸盐熔体的不混熔过程。根据熔融包裹体均一温度与均一过程的时间,利用相应公式,计算出郭家岭岩体包裹体熔体的粘度和含水量,认为该岩体是从一种高温高粘度的岩浆中结晶成岩的。  相似文献   
8.
Abstract Fluid inclusion studies of rocks from the late Archaean amphibolite-facies to granulite-facies transition zone of southern India provide support for the hypothesis that CO2,-rich H2O-poor fluids were a major factor in the origin of the high-grade terrain. Charnockites, closely associated leucogranites and quartzo-feldspathic veins contain vast numbers of large CO2-rich inclusions in planar arrays in quartz and feldspar, whereas amphibole-bearing gray gneisses of essentially the same compositions as adjacent charnockites in mixed-facies quarries contain no large fluid inclusions. Inclusions in the northernmost incipient charnockites, as at Kabbal, Karnataka, occasionally contain about 25 mol. % of immiscible H2O lining cavity walls, whereas inclusions from the charnockite massif terrane farther south do not have visibile H2O Microthermometry of CO2 inclusions shows that miscible CH4 and N2 must be small, probably less than 10mol.%combined. Densities of CO2 increase steadily from north to south across the transitional terrane. Entrapment pressures calculated from the CO2 equation of state range from 5 kbar in the north to 7.5 kbar in the south at the mineralogically inferred average metamorphic temperature of 750°C, in quantitative agreement with mineralogic geobarometry. This agreement leads to the inference that the fluid inclusions were trapped at or near peak metamorphic conditions. Calculations on the stability of the charnockite assemblage biotite-orthopyroxene-K-feldspar-quartz show that an associated fluid phase must have less than 0.35 H2O activity at the inferred P and T conditions, which agrees with the petrographic observations. High TiO2 content of biotite stabilizes it to lower H2O activities, and the steady increase of biotite TiO2 southward in the area suggests progressive decrease of aH2O with increasing grade. Oxygen fugacities calculated from orthopyroxene-magnetite-quartz are considerably higher than the graphite CO2-O2 buffer, which explains the absence of graphite in the charnockites. The present study quantifies the nature of the vapours in the southern India granulite metamorphism. It remains to be determined whether CO2-flushing of the crust can, by itself, create large terranes of largeion lithophile-depleted granulites, or whether removal of H2O-bearing anatectic melts is essential.  相似文献   
9.
青海省都兰县果洛龙洼金矿成矿流体   总被引:2,自引:0,他引:2  
果洛龙洼金矿是青海东昆仑地区最典型、最具规模的金矿床之一。在前人资料基础上,将果洛龙洼金矿热液成矿期划分为4个成矿阶段:贫矿化石英阶段、石英-多金属硫化物阶段(主要成矿阶段)、石英-贫硫化物阶段(次要成矿阶段)和石英-碳酸盐阶段。随后对主要和次要成矿阶段石英脉开展流体包裹体显微测温和H-O同位素研究。结果表明:原生流体包裹体主要包括气液两相、富CO2三相、纯CO2两相共3类;成矿流体总体以CO2-NaCl-H2O体系为主,均一温度为130.0~357.3 ℃,盐度(w(NaCl))为1.83%~20.11%。石英-多金属硫化物阶段石英δ18OV-SMOW值为14.8‰~17.2‰,据此计算流体的δ18OH2O值为5.5‰~8.5‰,流体的δDV-SMOW值为-61‰~-96‰;而石英-贫硫化物阶段石英δ18OV-SMOW值为15.7‰~16.9‰,据此计算流体的δ18OH2O值为4.1‰~5.3‰,流体的δDV-SMOW值为-84‰~-101‰。由此认为:主要成矿阶段成矿流体可能为高温低盐度富CO2变质热液和低温中高盐度岩浆热液两个端元组成的混合流体;次要成矿阶段成矿流体主要为混合后更均匀的中低温中低盐度热液,但后期明显有大气降水混入。总之,成矿流体的来源、性质及其演化等方面的研究结果进一步证明果洛龙洼金矿为造山型金矿。  相似文献   
10.
湖南锡田钨锡多金属矿床流体包裹体研究   总被引:1,自引:0,他引:1  
锡田钨锡多金属矿床是南岭钨锡成矿带的重要组成部分。文章主要针对石英脉型钨锡矿和云英岩型钨矿中的石英流体包裹体进行了显微测温和激光拉曼光谱分析,流体包裹体分为4类:富液相两相水溶液包裹体(L型)、富气相两相水溶液包裹体(V型)、V_(CO_2)-L_(CO_2)-L_(H_2O)三相包裹体(C型)和含子晶三相包裹体(S型)。石英脉型钨锡矿均一温度为240~440℃,ω(NaCl_(eq))为1.4%~9.5%,云英岩型钨矿均一温度为370~470℃,且富锡石样品均一温度(t_h:310~420℃,ω(NaCl_(eq))为4.3%~9.5%)略高于富黑钨矿样品(t_h:240~340℃,ω(NaCl_(eq))为1.4%~7.7%)。流体包裹体气相成分主要为CO_2、CH_4、N_2。结合流体包裹体显微测温、激光拉曼光谱分析结果和野外矿床地质特征,探讨了成矿流体中N_2、CH_4的源区、W和Sn的赋存状态以及其成矿机制。W以一系列钨酸、钨酸根离子、碱金属钨酸盐赋存于流体中,Sn主要赋存状态为Sn(+2价)-Cl络合物。石英脉型钨锡矿因流体上升至花岗岩体或围岩的构造裂隙中,成矿流体与围岩相互反应以及与地壳流体与大气水混合,其p、t急剧下降以及流体pH值变化,导致黑钨矿沉淀,成矿流体从还原环境转为氧化环境致使锡石沉淀成矿。云英岩型钨矿有效成矿机制是流体沸腾或不混溶。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号