首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
地质学   5篇
综合类   2篇
  2016年   1篇
  2014年   2篇
  2013年   1篇
  2010年   1篇
  2008年   1篇
  1997年   1篇
排序方式: 共有7条查询结果,搜索用时 31 毫秒
1
1.
During the deposition of the Chang-7 (Ch-7) and Chang-6 (Ch-6) units in the Upper Triassic, gravity flows were developed widely in a deep lake in the southwestern Ordos Basin, China. Based on cores, outcrops, well-logs and well-testing data, this paper documents the sedimentary characteristics of the gravity-flow deposits and constructs a depositional model. Gravity-flow deposits in the study area comprise seven lithofacies types, which are categorised into four groups: slides and slumps, debris-flow-dominated lithofacies, turbidity-current-dominated lithofacies, and deep-water mudstone-dominated lithofacies. The seven lithofacies form two sedimentary entities: sub-lacustrine fan and the slump olistolith, made up of three and two lithofacies associations, respectively. Lithofacies association 1 is a channel–levee complex with fining-/thinning-upward sequences whose main part is characterised by sandy debris flow-dominated, thick-bedded massive sandstones. Lithofacies association 2 represents distributary channelised lobes of sub-lacustrine fans, which can be further subdivided into distributary channel, channel lateral margin and inter-channel. Lithofacies association 3 is marked by non-channelised lobes of sub-lacustrine fans, including sheet-like turbidites and deep-lake mudstones. Lithofacies association 4 is represented by proximal lobes of slump olistolith, consisting of slides and slumps. Lithofacies association 5 is marked by distal lobes of slump olistolith, comprising tongue-shaped debris flow lobes and turbidite lobes. It is characterised by sandy debris flow, muddy debris flow-dominated sandstone and sandstone with classic Bouma sequences. Several factors caused the generation of gravity flows in the Ordos Basin, including sediment supply, terrain slope and external triggers, such as volcanisms, earthquakes and seasonal floods. The sediment supply of sub-lacustrine fan was most likely from seasonal floods with a high net-to-gross and incised channels. Triggered by volcanisms and earthquakes, the slump olistolith is deposited by the slumping and secondary transport of unconsolidated sediments in the delta front or prodelta with a low net-to-gross and no incised channels.  相似文献   
2.
A blueschist facies tectonic sliver, 9 km long and 1 km wide, crops out within the Miocene clastic rocks bounded by the strands of the North Anatolian Fault zone in southern Thrace, NW Turkey. Two types of blueschist facies rock assemblages occur in the sliver: (i) A serpentinite body with numerous dykes of incipient blueschist facies metadiabase (ii) a well‐foliated and thoroughly recrystallized rock assemblage consisting of blueschist, marble and metachert. Both are partially enveloped by an Upper Eocene wildflysch, which includes olistoliths of serpentinite–metadiabase, Upper Cretaceous and Palaeogene pelagic limestone, Upper Eocene reefal limestone, radiolarian chert, quartzite and minor greenschist. Field relations in combination with the bore core data suggest that the tectonic sliver forms a positive flower structure within the Miocene clastic rocks in a transpressional strike–slip setting, and represents an uplifted part of the pre‐Eocene basement. The blueschists are represented by lawsonite–glaucophane‐bearing assemblages equilibrated at 270–310 °C and ~0.8 GPa. The metadiabase dykes in the serpentinite, on the other hand, are represented by pumpellyite–glaucophane–lawsonite‐assemblages that most probably equilibrated below 290 °C and at 0.75 GPa. One metadiabase olistolith in the Upper Eocene flysch sequence contains the mineral assemblage epidote + pumpellyite + glaucophane, recording P–T conditions of 290–350 °C and 0.65–0.78 GPa, indicative of slightly lower depths and different thermal setting. Timing of the blueschist facies metamorphism is constrained to c. 86 Ma (Coniacian/Santonian) by Rb–Sr phengite–whole rock and incremental 40Ar–39Ar phengite dating on blueschists. The activity of the strike–slip fault post‐dates the blueschist facies metamorphism and exhumation, and is only responsible for the present outcrop pattern and post‐Miocene exhumation (~2 km). The high‐P/T metamorphic rocks of southern Thrace and the Biga Peninsula are located to the southeast of the Circum Rhodope Belt and indicate Late Cretaceous subduction and accretion under the northern continent, i.e. the Rhodope Massif, enveloped by the Circum Rhodope Belt. The Late Cretaceous is therefore a time of continued accretionary growth of this continental domain.  相似文献   
3.
Structural relationships between the Neoproterozoic rock complexes of a continental massif,island arc and back-arc basin geodynamic affinities are described and considered in this work based on field observations within the northeastern segment of the Central Taimyr tectonic zone distinguished in the late Hercynian foldthrust belt of Taimyr Peninsula. As is established for the first time,rock complexes of the continental massif with the early Late Riphean( Tonian-Cryogenian) volcanogenic-sedimentary cover occur in the study region as the allochthonous syn- and post-sedimentary thrust sheets buried in or thrust over deposits of a back-arc basin,which accumulated in the terminal Late Riphean( Cryogenian)--initial Vendian( Ediacaran). These and other results of the large-scale structural observations elucidate important details of the region tectonic development in the Late Precambrian,when two lateral ensembles of the Neoproterozoic structures originated in the region. In the first half of the Neoproterozoic,the regional tectonic ensemble included the oceanic plate abut on the continental massif with a primitive volcano-plutonic belt. The subsequent system of an island arc and marginal backarc basin originated in the second half of the Neoproterozoic and existed approximately till the mid-Vendian( Ediacaran) phase of the intense formation of thrust sheets in the region.  相似文献   
4.
异地碳酸盐岩块体是指已固结或半固结的、经过一定距离搬运再沉积而产于正常沉积地层中规模 较大的碳酸盐岩块,它和碳酸盐岩重力流沉积均属于再沉积碳酸盐岩。文章分析了岩崩、岩屑崩坍、海底滑坡、 滑塌和碎屑流沉积的过程,讨论了异地碳酸盐岩块体的沉积机制;归纳了异地碳酸盐岩块体形成的主要地质背 景,认为异地碳酸盐岩块体可见于活动大陆边缘、被动大陆边缘、海山和前陆盆地等地质环境中;着重介绍了 异地碳酸盐岩块体和碳酸盐岩重力流沉积的研究进展,即线源式的碳酸盐岩裙沉积和点源式的碳酸盐岩海底扇 沉积;最后,阐释了滑来岩块、滑塌堆积和碎屑流沉积的区别与联系,总结了孤立碳酸盐岩块体的搬运沉积机 制,对比区分了碳酸盐岩裙沉积和碳酸盐岩海底扇的沉积特征,认为它们在斜坡环境、沉积物类型和沉积特征 等方面存在诸多不同。  相似文献   
5.
康玉地区中、晚侏罗世发育一套非同寻常的重力流沉积(拉贡塘组),主要有颗粒流、泥石流及浊流沉积三种类型。属次深海—深海(斜坡—盆底)环境,由断裂活动引起的岩崩、滑塌、块体流、浊流等的沉积产物。  相似文献   
6.
Structural relationships between the Neoproterozoic rock complexes of a continental massif, island arc and back-arc basin geodynamic affinities are described and considered in this work based on field observations within the northeastern segment of the Central Taimyr tectonic zone distinguished in the late Hercynian fold- thrust belt of Taimyr Peninsula. As is established for the first time, rock complexes of the continental massif with the early Late Riphean (Tonian-Cryogenian) volcanogenic-sedimentary cover occur in the study region as the allochthonous syn- and post-sedimentary thrust sheets buried in or thrust over deposits of a back-arc basin, which accumulated in the terminal Late Riphean (Cryogcnian)-initial Vendian (Ediacaran). These and other results of the large-scale structural observations elucidate important details of the region tectonic development in the Late Precambrian, when two lateral ensembles of the Neoproterozoic structures originated in the region. In the first half of the Neoproterozoic, the regional tectonic ensemble included the oceanic plate abut on the continental massif with a primitive volcano-plutonic belt. The subsequent system of an island arc and marginal back- arc basin originated in the second half of the Neoproterozoic and existed approximately till the mid-Vendian (Ediacaran) phase of the intense formation of thrust sheets in the region.  相似文献   
7.
《Geodinamica Acta》2013,26(1-3):101-126
The olistostromes formed in Northern Carpathians during the different stages of the development of flysch basins, from rift trough post-rift, orogenic to postorogenic stage. They are known from the Cretaceous, Paleocene, Eocene, Oligocene and Early Miocene flysch deposits of main tectonic units. Those units are the Skole, Subsilesian, Silesian, Dukla and Magura nappes as well as the Pieniny Klippen Belt suture zone. The oldest olistoliths in the Northern Carpathians represent the Late Jurassic-Early Cretaceous rifting and post-rifting stage of the Northern Carpathians and origin of the proto-Silesian basin. They are known from the Upper Jurassic as well as Upper Jurassic-Lower Cretaceous formations. In the southern part of the Polish Northern Carpathians as well as in the adjacent part of Slovakia, the olistoliths are known in the Cretaceous- Paleocene flysch deposits of the Pieniny Klippen Belt Zlatne Unit and in Magura Nappe marking the second stage of the plate tectonic evolution - an early stage of the development of the accretionary prism. The most spectacular olistostromes have been found in the vicinity of Haligovce village in the Pieniny Klippen Belt and in Jaworki village in the border zone between the Magura Nappe and the Pieniny Klippen Belt. Olistoliths that originated during the second stage of the plate tectonic evolution occur also in the northern part of the Polish Carpathians, in the various Upper Cretaceous-Early Miocene flysch deposits within the Magura, Fore-Magura, Dukla, Silesian and Subsilesian nappes. The Fore-Magura and Silesian ridges were destroyed totally and are only interpreted from olistoliths and exotic pebbles in the Outer Carpathian flysch. Their destruction is related to the advance of the accretionary prism. This prism has obliquely overridden the ridges leading to the origin of the Menilite-Krosno basin.

In the final, postcollisional stage of the Northern Carpathian plate tectonic development, some olistoliths were deposited within the late Early Miocene molasse. These are known mainly from the subsurface sequences reached by numerous bore-holes in the western part of the Polish Carpathians as well as from outcrops in Poland and the Czech Republic.

The largest olistoliths (kilometers in size bodies of shallow-water rocks of Late Jurassic-Early Cretaceous age) are known from the Moravia region. The largest olistoliths in Poland were found in the vicinity of Andrychów and are known as Andrychów Klippen. The olistostromes bear witness to the processes of the destruction of the Northern Carpathian ridges. The ridge basement rocks, their Mesozoic platform cover, Paleogene deposits of the slope as well as older Cretaceous flysch deposits partly folded and thrust within the prism slid northward toward the basin, forming the olistostromes.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号