首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26280篇
  免费   5756篇
  国内免费   8497篇
测绘学   1452篇
大气科学   2853篇
地球物理   5471篇
地质学   20734篇
海洋学   2188篇
天文学   102篇
综合类   2342篇
自然地理   5391篇
  2024年   73篇
  2023年   380篇
  2022年   950篇
  2021年   1223篇
  2020年   1230篇
  2019年   1477篇
  2018年   1311篇
  2017年   1272篇
  2016年   1435篇
  2015年   1551篇
  2014年   1906篇
  2013年   1864篇
  2012年   2002篇
  2011年   2139篇
  2010年   1863篇
  2009年   1883篇
  2008年   1840篇
  2007年   1962篇
  2006年   2046篇
  2005年   1650篇
  2004年   1465篇
  2003年   1295篇
  2002年   1157篇
  2001年   1077篇
  2000年   860篇
  1999年   783篇
  1998年   706篇
  1997年   604篇
  1996年   486篇
  1995年   410篇
  1994年   366篇
  1993年   311篇
  1992年   274篇
  1991年   187篇
  1990年   122篇
  1989年   95篇
  1988年   84篇
  1987年   47篇
  1986年   31篇
  1985年   27篇
  1984年   15篇
  1983年   7篇
  1982年   6篇
  1981年   9篇
  1980年   11篇
  1979年   9篇
  1978年   12篇
  1977年   13篇
  1976年   3篇
  1954年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The Bear Brook Watershed in Maine (BBWM) is a long-term research site established to study the response of forest ecosystem function to environmental disturbances of chronic acidic deposition and ecosystem nitrogen enrichment. Starting in 1989, the West Bear (treated) watershed received bimonthly applications of ammonium sulfate [(NH4)2SO4] fertilizer from above the canopy, whereas East Bear (reference) received ambient deposition. The treatments were stopped in 2016, marking the beginning of the recovery phase. Research at the site has focused on soils, streams, and vegetation. Here, we describe data collected over three decades at the BBWM—input and stream output nutrient fluxes, quantitative soil pits and soil chemistry, and soil temperature and moisture.  相似文献   
2.
In snowmelt-driven mountain watersheds, the hydrologic connectivity between meteoric waters and stream flow generation varies strongly with the season, reflecting variable connection to soil and groundwater storage within the watershed. This variable connectivity regulates how streamflow generation mechanisms transform the seasonal and elevational variation in oxygen and hydrogen isotopic composition (δ18O and δD) of meteoric precipitation. Thus, water isotopes in stream flow can signal immediate connectivity or more prolonged mixing, especially in high-relief mountainous catchments. We characterized δ18O and δD values in stream water along an elevational gradient in a mountain headwater catchment in southwestern Montana. Stream water isotopic compositions related most strongly to elevation between February and March, exhibiting higher δ18O and δD values with decreasing elevation. These elevational isotopic lapse rates likely reflect increased connection between stream flow and proximal snow-derived water sources heavily subject to elevational isotopic effects. These patterns disappeared during summer sampling, when consistently lower δ18O and δD values of stream water reflected contributions from snowmelt or colder rainfall, despite much higher δ18O and δD values expected in warmer seasonal rainfall. The consistently low isotopic values and absence of a trend with elevation during summer suggest lower connectivity between summer precipitation and stream flow generation as a consequence of drier soils and greater transpiration. As further evidence of intermittent seasonal connectivity between the stream and adjacent groundwaters, we observed a late-winter flush of nitrate into the stream at higher elevations, consistent with increased connection to accumulating mineralized nitrogen in riparian wetlands. This pattern was distinct from mid-summer patterns of nitrate loading at lower elevations that suggested heightened human recreational activity along the stream corridor. These observations provide insights linking stream flow generation and seasonal water storage in high elevation mountainous watersheds. Greater understanding of the connections between surface water, soil water and groundwater in these environments will help predict how the quality and quantity of mountain runoff will respond to changing climate and allow better informed water management decisions.  相似文献   
3.
以Visual Studio 2012为平台,利用ArcGIS Engine强大的空间分析功能,以C#为开发语言结合第三方插件设计开发海域定级决策子系统,实现了不同用海方式海域的自动化定级,对海域定级基础数据、过程数据和结果数据进行综合管理,构建了一个具有一定实用价值的海域定级信息管理系统原型;此外,利用WebGIS将海域定级决策子系统分析生成的结果数据发布成服务,实现海域定级信息共享子系统。本研究为海域定级提供智能化平台,提高对海域定级及评估效率,有利于海洋可持续发展。  相似文献   
4.
青州市表层土壤元素地球化学组合特征研究   总被引:1,自引:0,他引:1       下载免费PDF全文
聚类分析和因子分析可以获得土壤元素地球化学组合特征及其差异性。对青州市表层土壤样品数据进行分析研究,通过聚类分析,绘制表层土壤元素聚类谱系图,将23种元素或指标分为5个元素组合簇群及2个单元素簇,研究各元素间的组合特征,探讨其相关性、聚集性及其指示意义;通过因子分析,找出有代表性的因子,用其代表变量,绘制典型因子得分等值线图,并从中分析不同元素组合的区域分布基于何种因素,用11个代表性因子的分布特征就基本可以代表青州市表层土壤23项原始变量的分布特征,并对F1,F2,F3主因子进行了地质解释。聚类分析与因子分析相结合,利于表层土壤中元素的共生组合特征及其差异性研究,利于对研究区表层土壤异常进行归纳总结。  相似文献   
5.
Forests in the Southeastern United States are predicted to experience future changes in seasonal patterns of precipitation inputs as well as more variable precipitation events. These climate change‐induced alterations could increase drought and lower soil water availability. Drought could alter rooting patterns and increase the importance of deep roots that access subsurface water resources. To address plant response to drought in both deep rooting and soil water utilization as well as soil drainage, we utilize a throughfall reduction experiment in a loblolly pine plantation of the Southeastern United States to calibrate and validate a hydrological model. The model was accurately calibrated against field measured soil moisture data under ambient rainfall and validated using 30% throughfall reduction data. Using this model, we then tested these scenarios: (a) evenly reduced precipitation; (b) less precipitation in summer, more in winter; (c) same total amount of precipitation with less frequent but heavier storms; and (d) shallower rooting depth under the above 3 scenarios. When less precipitation was received, drainage decreased proportionally much faster than evapotranspiration implying plants will acquire water first to the detriment of drainage. When precipitation was reduced by more than 30%, plants relied on stored soil water to satisfy evapotranspiration suggesting 30% may be a threshold that if sustained over the long term would deplete plant available soil water. Under the third scenario, evapotranspiration and drainage decreased, whereas surface run‐off increased. Changes in root biomass measured before and 4 years after the throughfall reduction experiment were not detected among treatments. Model simulations, however, indicated gains in evapotranspiration with deeper roots under evenly reduced precipitation and seasonal precipitation redistribution scenarios but not when precipitation frequency was adjusted. Deep soil and deep rooting can provide an important buffer capacity when precipitation alone cannot satisfy the evapotranspirational demand of forests. How this buffering capacity will persist in the face of changing precipitation inputs, however, will depend less on seasonal redistribution than on the magnitude of reductions and changes in rainfall frequency.  相似文献   
6.
Soil water dynamics are central in linking and regulating natural cycles in ecohydrology, however, mathematical representation of soil water processes in models is challenging given the complexity of these interactions. To assess the impacts of soil water simulation approaches on various model outputs, the Soil and Water Assessment Tool was modified to accommodate an alternative soil water percolation method and tested at two geographically and climatically distinct, instrumented watersheds in the United States. Soil water was evaluated at the site scale via measured observations, and hydrologic and biophysical outputs were analysed at the watershed scale. Results demonstrated an improved Kling–Gupta Efficiency of up to 0.3 and a reduction in percent bias from 5 to 25% at the site scale, when soil water percolation was changed from a threshold, bucket-based approach to an alternative approach based on variable hydraulic conductivity. The primary difference between the approaches was attributed to the ability to simulate soil water content above field capacity for successive days; however, regardless of the approach, a lack of site-specific characterization of soil properties by the soils database at the site scale was found to severely limit the analysis. Differences in approach led to a regime shift in percolation from a few, high magnitude events to frequent, low magnitude events. At the watershed scale, the variable hydraulic conductivity-based approach reduced average annual percolation by 20–50 mm, directly impacting the water balance and subsequently biophysical predictions. For instance, annual denitrification increased by 14–24 kg/ha for the new approach. Overall, the study demonstrates the need for continued efforts to enhance soil water model representation for improving biophysical process simulations.  相似文献   
7.
随着化肥、农膜等在农业生产中的过量投入,耕地面源污染的程度随之加重。文章选取塔里木河流域上游和田地区为研究区域,依据P-S-R框架理论,构建和田地区耕地面源污染生态风险评价指标体系,加入土壤理化数据,使用生态风险评价模型对和田地区1980 年及2016 年耕地面源污染状况进行生态风险评价,运用耕地生态风险模型、生态风险转移矩阵、Arcgis分析和田地区耕地面源污染时空分异状况。研究结论如下:和田地区1980 年耕地生态风险等级均为II级或III级,呈“中间高,两侧低”分布;2016 年耕地生态风险等级上升至IV级或V级,呈“倒W型”分布,各县耕地面源污染程度较1980 年均有较大幅度的上升,其中墨玉县和于田县在2016 年耕地生态风险等级达到最高的V级,而民丰县因自身生态环境的强脆弱性,同样需要提高关注。根据面源污染“从源头治理”的原则,应切实推进和田地区耕地生态环境保护与治理,提高政府重视程度,增强技术指导,开展试点工作,改善和田地区耕地面源污染现状。  相似文献   
8.
Li  Wei  Li  Xiaoyan  Huang  Yongmei  Wang  Pei  Zhang  Cicheng 《地理学报(英文版)》2019,29(9):1507-1526

In many arid ecosystems, vegetation frequently occurs in high-cover patches interspersed in a matrix of low plant cover. However, theoretical explanations for shrub patch pattern dynamics along climate gradients remain unclear on a large scale. This context aimed to assess the variance of the Reaumuria soongorica patch structure along the precipitation gradient and the factors that affect patch structure formation in the middle and lower Heihe River Basin (HRB). Field investigations on vegetation patterns and heterogeneity in soil properties were conducted during 2014 and 2015. The results showed that patch height, size and plant-to-patch distance were smaller in high precipitation habitats than in low precipitation sites. Climate, soil and vegetation explained 82.5% of the variance in patch structure. Spatially, R. soongorica shifted from a clumped to a random pattern on the landscape towards the MAP gradient, and heterogeneity in the surface soil properties (the ratio of biological soil crust (BSC) to bare gravels (BG)) determined the R. soongorica population distribution pattern in the middle and lower HRB. A conceptual model, which integrated water availability and plant facilitation and competition effects, was revealed that R. soongorica changed from a flexible water use strategy in high precipitation regions to a consistent water use strategy in low precipitation areas. Our study provides a comprehensive quantification of the variance in shrub patch structure along a precipitation gradient and may improve our understanding of vegetation pattern dynamics in the Gobi Desert under future climate change.

  相似文献   
9.
Classification of fine-grained soils is typically conducted using plasticity charts. The typically used plasticity chart proposed by Casagrande was questioned by Polidori proposing different classification criterion in separating clayey and silty soils. Using natural clayey and silty soils sampled from four different coastal sites in Korea, applicability of both Casagrande’s and Polidori’s plasticity charts was evaluated. Classification results of Korean natural soils based on the Casagrande’s and Polidori’s plasticity charts did not match well with those based on the soils’ behavior reported in the previous publication. The disagreement in classification of Korean natural fine-grained soils may result from disregard of considerable silt fraction effect on plastic and liquid limits for Polidori’s chart. Consequently, revised proposal of Polidori’s plasticity chart was tentatively made for further classification of fine-grained soils suitable for Korean natural soils by accounting the effect of silt fraction on soil classification.  相似文献   
10.
盐水沟北铜矿区位于新疆库车县北部,其大地构造位置处于塔吉克-塔里木陆块区、塔里木陆块、塔里木北缘隆起、库车前陆盆地,区内构造活动强烈。铜矿床赋存于新近纪中新统康村组第一岩性段,矿体呈层状,严格受地层控制。区内共圈定10个铜矿体,矿石矿物主要为孔雀石、赤铜矿、水胆矾、自然铜等,矿体内无夹石,顶、底板围岩均为褐红色及浅红色粉质泥岩。该矿床为砂岩型铜矿床。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号