首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   396篇
  免费   67篇
  国内免费   129篇
大气科学   3篇
地球物理   58篇
地质学   295篇
海洋学   153篇
综合类   11篇
自然地理   72篇
  2024年   2篇
  2023年   11篇
  2022年   32篇
  2021年   33篇
  2020年   16篇
  2019年   30篇
  2018年   19篇
  2017年   28篇
  2016年   16篇
  2015年   27篇
  2014年   32篇
  2013年   32篇
  2012年   29篇
  2011年   37篇
  2010年   23篇
  2009年   32篇
  2008年   24篇
  2007年   12篇
  2006年   29篇
  2005年   15篇
  2004年   16篇
  2003年   15篇
  2002年   7篇
  2001年   8篇
  2000年   14篇
  1999年   9篇
  1998年   8篇
  1997年   3篇
  1996年   3篇
  1995年   6篇
  1994年   3篇
  1993年   1篇
  1992年   4篇
  1991年   3篇
  1990年   1篇
  1986年   3篇
  1985年   4篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
排序方式: 共有592条查询结果,搜索用时 15 毫秒
1.
Microbioerosion rates and microbioeroder community structure were studied in four Kenyan protected coral-reef lagoons using shell fragments of Tridacna giant clams to determine their response to the influence of terrestrial run-off. Fourteen different microbioeroder traces from seven cyanobacteria, three green algae and four fungi species were identified. The river discharge-impacted reef and ‘pristine’ reef showed similar composition but higher microbioeroder abundance and total cyanobacteria- and chlorophyte-bioeroded areas when compared with the other study reefs. Cyanobacteria dominated during the north-east monsoon (NEM) relative to the south-east monsoon (SEM) season, with algae and cyanobacteria being major microbioeroders in the river-impacted and pristine reefs. The rate of microbioerosion varied between 4.3 g CaCO3 m?2 y?1 (SEM) and 134.7 g CaCO3 m?2 y?1 (NEM), and was highest in the river-impacted reef (127.6 g CaCO3 m?2 y?1), which was almost double that in the pristine reef (69.5 g CaCO3 m?2 y?1) and the mangrove-fringed reef (56.2 g CaCO3 m?2 y?1). The microbioerosion rates measured in this study may not be high enough to cause concern with regard to the health and net carbonate production of Kenya’s coral reefs. Nevertheless, predicted increases in the frequency and severity of stresses related to global climate change (e.g. increased sea surface temperature, acidification), as well as interactions with local disturbances and their influence on bioerosion, may be increasingly important in the future.  相似文献   
2.
Recent studies of continental carbonates revealed that carbonates with similar fabrics can be formed either by biotic, biologically-induced, biologically-influenced or purely abiotic processes, or a combination of all. The aim of this research is to advance knowledge on the formation of carbonates precipitated (or diagenetically altered) in extreme, continental environments by studying biotic versus abiotic mechanisms of crystallization, and to contribute to the astrobiology debate around terrestrial analogues of Martian extreme environments. Both fossil (upper Pleistocene to Holocene) and active carbonate spring mounds from the Great Artesian Basin (South Australia) have been investigated. These carbonates consist of low-Mg to high-Mg calcite tufa. Four facies have been described: (i) carbonate mudstone/wackestone; (ii) phytohermal framestone/boundstone; (iii) micrite boundstone; and (iv) coarsely crystalline boundstone. The presence of filaments encrusted by micrite, rich in organic compounds, including ultraviolet-protectants, in phytohermal framestone/boundstone and micrite boundstone is clear evidence of the existence of microbial mats at the time of deposition. In contrast, peloidal micrite, despite commonly being considered a microbial precipitate, is not directly associated with filaments in the Great Artesian Basin mounds. It has probably formed from nanocrystal aggregation on colloid particulate. Thus, where biofilms have been documented, it is likely that bacteria catalyzed the development of fabrics. It is less certain that microbes induced calcium carbonate precipitation elsewhere. Trace elements, including rare earth element distribution from laminated facies, highlight strongly evaporative settings (for example, high Li contents). Carbon dioxide degassing and evaporation are two of the main drivers for an increase in fluid alkalinity, resulting in precipitation of carbonates. Hence, although the growth of certain fabrics is fostered by the presence of microbial mats, the formation of carbonate crystals might be independent from it and mainly driven by extrinsic factors. More generally, biological processes may be responsible for fabric and facies development in micritic boundstone whilst micrite nucleation and growth are driven by abiotic factors. Non-classical crystallization pathways (aggregation and fusion of nanoparticles from nucleation clusters) may be more common than previously thought in spring carbonate and this should be carefully considered to avoid misinterpretation of certain fabrics as by-products of life. It is proposed here that the term ‘organic-compound catalyzed mineralization’ should be used for crystal growth in the presence of organic compounds when dealing with astrobiological problems. This term would account for the possibility of multiple crystallization pathways (including non-classical crystallization) that occurred directly from an aqueous solution without the direct influence of microbial mats.  相似文献   
3.
Surface waters of Alsea Bay, an unpolluted estuary on the Oregon coast, were analysed for nitrous oxide, nitrate and nitrite on a weekly or biweekly basis during the summer of 1979. The estuary was found to be a variable source of N2O to the atmosphere. Large and rapid increases in the concentrations of N2O, NO3?, and NO2? occurred at the beginning of the sampling period and are attributed to the influx of nutrient-rich upwelling water into the estuary with the tide. The subsequent decline in concentrations of nitrate, nitrite and nitrous oxide over the remainder of the summer is attributed to a decrease in upwelling intensity, a decline in nitrification rates and to assimilatory nitrate reduction. Measurements of nitrous oxide at six stations along the Alsea River were also made in September and October before and after the onset of the rainy season. Samples taken after flood conditions were established were systematically 50% higher than pre-flood samples. The data suggest that soil runoff results in elevated concentrations of N2O in rivers.  相似文献   
4.
Microbial Diversity in Nankai Trough Sediments at a Depth of 3,843 m   总被引:6,自引:0,他引:6  
Dense populations of bivalves, primarily Calyptogena sp., were observed at cold seeps of the Nankai Trough. Bacterial input to the sediment was estimated through determination of phospholipid ester-linked fatty acid (PLFA) and DNA profiles. Results indicated a bacterial biomass of 109 cells (g dry wt)-1 while individual fatty acid profiles revealed a predominance of monounsaturated fatty acids, mainly 18:1 isomers. The presence of these fatty acids can be interpreted to reflect a response to low temperature and a predominance of psychrophilic bacteria. DNA fragments encoding bacterial ribosomal RNA small-subunit sequences (16S rDNA) were amplified by the polymerase chain reaction method using DNA extracted directly from the sediment samples. From the sequencing results, at least 19 kinds of bacterial 16S rDNAs related to mostly the Proteobacteria and a few gram-positive bacteria were identified. These results suggest that the bacterial community in the Nankai Trough sediments consists of mainly bacteria belonging to the Proteobacteria , , and subdivisions. Bacteria belonging to the and subdivisions, which are known to include epibiont and sulfate reducing bacteria, respectively, were mostly detected in the sediment obtained from inside the area of the Calyptogena community, and the -Proteobacteria may function to supply reduced sulfur to bacterial endosymbionts of Calyptogena.  相似文献   
5.
Porewater nutrient dynamics during emersion and immersion were investigated during different seasons in a eutrophic intertidal sandflat of Tokyo Bay, Japan, to elucidate the role of emersion and immersion in solute transport and microbial processes. The water content in the surface sediment did not change significantly following emersion, suggesting that advective solute transport caused by water table fluctuation was negligible. The rate of change in nitrate concentration in the top 10 mm of sediments ranged from −6.6 to 4.8 μmol N l−1 bulk sed. h−1 during the whole period of emersion. Steep nutrient concentration gradients in the surface sediment generated diffusive flux of nutrients directed downwards into deeper sediments, which greatly contributed to the observed rates of change in porewater nutrient concentration for several cases. Microbial nitrate reduction within the subsurface sediment appeared to be strongly supported by the downward diffusive flux of nitrate from the surface sediment. The stimulation of estimated nitrate production rate in the subsurface layer in proportion to the emersion time indicates that oxygenation due to emersion caused changes in the sediment redox environment and affected the nitrification and/or nitrate reduction rates. The nitrate and soluble reactive phosphorus pools in the top 10 mm of sediment decreased markedly during immersion (up to 68% for nitrate and up to 44% for soluble reactive phosphorus), however, this result could not be solely explained by molecular diffusion.  相似文献   
6.
人工饲料饲养的对虾肠道菌群和水体细菌区系的研究   总被引:9,自引:0,他引:9  
对人工饲料饲养的凡纳滨对虾Litopenaeus vannamei成虾肠道菌群组成及其水体细菌区系组成进行了研究.分离纯化后的革兰氏阴性菌鉴定到种的水平.对虾肠道菌群主要由弧菌Vibrio spp.、希瓦氏菌属Shewnella spp.、嗜氢菌属Hydrogenophaga spp.、伯克霍尔德氏菌Burkholderia spp.、气单胞菌Aeromonas spp.、食酸菌Acidovorax spp.和芽孢杆菌Bacillus spp.组成.水体细菌区系主要包括弧菌Vibrio spp.、希瓦氏菌属Shewnella spp.、艾肯菌Empedobacter spp.、无色杆菌Achromobacter spp.和芽孢杆菌Bacillus spp..肠道菌群和水体细菌区系的优势菌是副溶血弧菌Vibrio parahaemolyticus和芽孢杆菌Bacillus spp..利用Shannon-Wiener指数进行多样性分析,发现虾肠道多样性指数(H)和均匀度(J)高于水体细菌区系,而丰度(D)较低.  相似文献   
7.
1994年6,7月,调查了广州、深圳、珠海及珠江口海区的空气微生物粒子沉降量状况。发现空气微生物粒子总量、真菌粒子量、真菌粒子数/总菌粒子数百分比在三市中不一致。这三种数据一般是陆上的高于海上。随着距陆的增加,都市影响的减弱和海面的开阔,空气微生物含量呈减少之势,显示出海洋新鲜空气对陆上污染空气的调节、净化作用。文中还分析了空气微生物有关参数与气温、风力或相对湿度间的相关关系。  相似文献   
8.
A strain of yeast, which can endure high osmotic pressure, is employed for the sensitive material of the microbial BOD sensor. Two immobilization methods are used, I.e. Calcium alginate gel be ads and PV A gel beads. The results show that the PVA gel beads is better. The influences of osmosis and heavy metal ions on the yeast entrapped in the PVA gel beads are also studied in the experiment.  相似文献   
9.
Abstract. Recent findings indicate that heterotrophic bacteria and not phytoplankton are the most numerous biomass components even in the euphotic zone of oligotrophic, open oceans. In this study it was hypothesized that the microbial biomass components change within a few hundred meters as oligotrophic water flows across the reef and becomes enriched with nutrients. Along a trophic gradient, four stations at the Atlantic Barrier Reef off Belize (Central America) were sampled for microbial biomass components. Phytoplankton biomass (measured as chlorophyll a) ranged from the most oligotrophic station (St. 1) to the most eutrophic station (St. 4) from 6.9–415.5 μg CI"' (assuming a C:chl a ratio of 30): heterotrophic bacterial biomass increased 4-fold (from 10.1–46.4μg C 1-1), heterotrophic nanoflagellate (HNAN) biomass increased from 4.6-19ug C 1-1, and cyanobacteria from 0.9-4.5 μg C-1-1. Production estimates derived from seawater cultures revealed a 5-fold increase in bacterial production from the oligotrophic station (3.7 ug C 1-1 d-1) to the eutrophic St. 4 (17.8ug C-1-d1-1)- Cyanobacterial production rose from 1.1–3.5ug C-1–d-1 and HNAN production from 0.65-1.13 μg C-1-1 -d-1. While cyanobacteria contributed between 13 and 20% to the autotrophic plankton component in the oligotrophic waters, their contribution dropped to about 1 % at the eutrophic stations.  相似文献   
10.
本文综述了近年来国内外在海洋地球化学循环,特别是微生物环研究方面的发展现状,探讨了浮游植物,细菌,病毒相互之间的关系及其对海洋地球化学循环的影响。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号