首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   4篇
  国内免费   1篇
大气科学   2篇
地球物理   22篇
地质学   20篇
海洋学   2篇
天文学   13篇
自然地理   7篇
  2022年   2篇
  2021年   1篇
  2020年   4篇
  2019年   3篇
  2018年   6篇
  2017年   2篇
  2016年   5篇
  2015年   6篇
  2014年   10篇
  2013年   11篇
  2012年   4篇
  2011年   4篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   1篇
  2006年   1篇
排序方式: 共有66条查询结果,搜索用时 15 毫秒
1.
Geomagnetism and Aeronomy - In this study, a hypothesis is proposed about the possible effect of Geomagnetic field (GMF) on the charge structure of a thundercloud based on Lorentz force equation...  相似文献   
2.
Spatial and temporal trends of dust storms across desert regions of Iran   总被引:1,自引:1,他引:0  
Dust storms are among natural and anthropogenic hazards for socioeconomic resources, especially in desert regions. In recent years, dust storms have become a serious problem, especially in desert regions of Iran. This study investigates temporal and spatial variation of dust storm frequency in desert regions of Iran. The number of dusty days (NDD) are collected from 22 stations across the region. The statistical analysis of NDD time series is carried out to show both spatial and seasonal pattern of dust storm occurrence in the region. The regional map of statistical characteristics indicates a north to south increasing dust storm frequency. The spatial map also reveals higher year-to-year variation in south eastern Iran. The seasonality of NDD shows the highest frequency for summer followed by the spring and autumn seasons. The popular Mann–Kendall and the bootstrap MK test to consider serial correlation are then applied for Trend assessment. Results showed both negative (across the north and northwestern regions) and positive trend (across south and south eastern regions) in the annual and seasonal NDD time series. This north-to-south gradient in the spatial and temporal frequency NDD may arise from harsh dry and gusty winds as well as intense land use change in the south eastern territories of Iran. However, more careful and detailed studies are required to connect environmental conditions to change in NDD frequency.  相似文献   
3.
Concerns for microbial safety of surface water facilitate development of predictive models that estimate concentrations and total numbers of pathogen and indicator organisms leaving manure‐fertilized fields in overland flow during runoff events. Spatial variability of bacterial concentrations in applied manure introduces high uncertainty in the model predictions. The objective of this work was to evaluate the uncertainty in model predictions of the manure‐borne bacteria overland transport caused by limited information on the spatial distribution of bacteria in surface‐applied manure. Experiments were carried out at the ARS Beltsville experimental watershed site (OPE3) in Maryland. Dairy bovine manure was applied at a 59·3 t/ha rate on the 3·55 hectare experimental field. Faecal coliform (FC) concentrations in manure measured in 2004, 2005, 2007, and 2009 varied by 4 orders of magnitude each year. Both runoff volume and FC concentrations in runoff water were monitored using a runoff flume equipped with a refrigerated pump sampler. Two runoff events occurred before the manure was incorporated into the soil. A bacteria transport add‐on module simulator of transport with infiltration and runoff (STWIR) was linked with the event‐based kinematic runoff and erosion model (KINEROS2) to simulate convective‐dispersive overland transport, bacteria release from manure, reversible attachment–detachment to soil, and surface straining of infiltrating bacteria. The model was successfully calibrated with the field experiment data. Monte Carlo simulations were carried out to account for the spatial variation in FC in applied manure and uncertainty in the FC distribution in manure caused by the small number of samples. A tenfold and twofold variation in FC concentrations in the runoff were obtained within the 90% probability interval when initial FC spatial distributions in the manure were represented by 5 and 29 samples, respectively. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
4.
5.
6.
7.
This paper assesses the various factors contributing to climate change in the region of the Kashafroud G-WADI Basin in Iran; quantifies the local impacts of climate change, especially local water scarcity; and simulates and discusses several proposed methods to combat these impacts. Hydrologic and climatic data are statistically analyzed and VENSIM modeling is used for various simulations of water resources in the basin. Results show that the natural climate changes affecting Kashafroud Basin include increased temperature, less rainfall, more frequent droughts, and changes in rainfall patterns, all of which are local symptoms of climate change in recent years. However, the most important challenge in the basin is the overexploitation of surface and groundwater resources to meet the growing water demands, especially domestic needs. Changes in land use, reallocation of water uses, groundwater depletion, and degradation of the quality of surface waters have all contributed to significant changes in the environmental features of this basin, and are the main reason why water demands now exceed the renewal capacity of the basin. Proposed response measures include reallocation of resources among different uses, inter-basin water transfers, drawing water from six small dams on the Kashafroud River, reducing groundwater extraction, and replacing groundwater extraction for agriculture by reuse of urban wastewater. This study concludes that although changes in global climatic parameters have altered environmental features in the basin, local factors, such as water utilization beyond the renewable capacity of the basin, are more significant in worsening the impacts of climate change.  相似文献   
8.
Ecosystem services provided by depressional wetlands on the coastal plain of the Chesapeake Bay watershed (CBW) have been widely recognized and studied. However, wetland–groundwater interactions remain largely unknown in the CBW. The objective of this study was to examine the vertical interactions of depressional wetlands and groundwater with respect to different subsurface soil characteristics. This study examined two depressional wetlands with a low‐permeability and high‐permeability soil layer on the coastal plain of the CBW. The surface water level (SWL) and groundwater level (GWL) were monitored over 1 year from a well and piezometer at each site, respectively, and those data were used to examine the impacts of subsurface soil characteristics on wetland–groundwater interactions. A large difference between the SWL and GWL was observed at the wetland with a low‐permeability soil layer, although there was strong similarity between the SWL and GWL at the wetland with a high‐permeability soil layer. Our observations also identified a strong vertical hydraulic gradient between the SWL and GWL at the wetland with a high‐permeability soil layer relative to one with a low‐permeability soil layer. The hydroperiod (i.e., the total time of surface water inundation or saturation) of the wetland with a low‐permeability soil layer appeared to rely on groundwater less than the wetland with a high‐permeability soil layer. The findings showed that vertical wetland–groundwater interactions varied with subsurface soil characteristics on the coastal plain of the CBW. Therefore, subsurface soil characteristics should be carefully considered to anticipate the hydrologic behavior of wetlands in this region.  相似文献   
9.
10.
In this paper, we investigate Bianchi type-VI cosmological model for the universe filled with dark energy and viscous fluid in the presence of cosmological constant. Also, we show accelerating expansion of the universe by drawing volume scale, pressure and energy density versus cosmic time. In order to solve the Einstein’s field equations, we assume the expansion scalar is proportional to a component of the shear tensor. Therefore, we obtain the directional scale factors and show the EOS parameter crosses over phantom divided-line.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号