首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
  国内免费   1篇
地质学   4篇
自然地理   1篇
  2019年   1篇
  2018年   1篇
  2014年   1篇
  2007年   1篇
  2005年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
The Lower Cretaceous sediments of the Ceahl?u Nappe (from the bend region of the Romanian Carpathians) were investigated from lithological and micropaleontological (calcareous nannoplankton) points of view. Our investigations revealed that the studied deposits were sedimented within the latest Tithonian-Albian interval. The calcareous nannofossil assemblages of the turbidite calcareous successions (the Sinaia Formation) were assigned to the NJK-?NC5 calcareous nannofossil zones, which cover the Late Tithonian-Early Barremian interval. The sandy-shaly turbidites, which followed the calcareous turbidites of the Sinaia Formation, are Early Barremian-Early Albian in age (interval covered by the ?NC5-NC8 calcareous nannofossil zones). Because the studied deposited are mainly turbidites, many reworked nannofossils from older deposits are present in the calcareous nannofloras. Thus, some biozones (i.e., NC5), defined based on the last occurrences of nannofossils, could not be identified. The calcareous nannofossil assemblages are composed of Tethyan taxa (which dominate the nannofloras) and cosmopolitan taxa. During two intervals (the Late Valanginian and across the Barremian/Aptian boundary), Tethyan and cosmopolitan nannofossils, together with Boreal ones, were observed. This type of mixed calcareous nannoplankton assemblage is indicative for sea-level high-stand, which allows the nannofloral exchange between the Tethyan and Boreal realms, within the two-above mentioned intervals.  相似文献   
2.
The basement of the Romanian Carpathians is made of Neoproterozoic to early Paleozoic periGondwanan terranes variably involved in the Variscan orogeny,similarly to other basement terrains of Europe.They were hardly dismembered during the Alpine orogeny and traditionally have their own names in the three Carpathian areas.The Danubian domain of the South Carpathians comprises the Dragsan and Lainici-Paius peri-Amazonian terranes.The Dragsan terrane originated within the ocean surrounding Rodinia and docked with Rodinia at ~800 Ma.It does not contain Cadomian magmatism and consequently it is classified as an Avalonian extra-Cadomian terrane.The Lainici-Paius terrane is a Ganderian fragment strongly modified by Cadomian subduction-related magmatism.It is attached to the Moesia platform.The Tisovita terrane is an ophiolite that marks the boundary between Dragsan and Lainici-Paius terranes.The other basement terranes of the Romanian Carpathians originated close to the Ordovician NorthAfrican orogen,as a result of the eastern Rheic Ocean opening and closure.Except for the Sebes-Lotru terrane that includes a lower metamorphic unit of Cadomian age,all the other terranes(Bretila,Tulghes,Negrisoara and Rebra in the East Carpathians,Somes,Biharia and Baia de Aries in the Apuseni mountains,Fagaras,Leaota,Caras and Pades in the South Carpathians) represent late Cambrian—Ordovician rock assemblages.Their provenance,is probably within paleo-northeast Africa,close to the Arabian-Nubian shield.The late Cambrian-Ordovician terranes are defined here as Carpathian-type terranes.According to their lithostratigraphy and origin,some are of continental margin magmatic arc setting,whereas others formed in rift and back-arc environment and closed to passive continental margin settings.In a paleogeographic reconstruction,the continental margin magmatic arc terranes were first that drifted out,followed by the passive continental margin terranes with the back-arc terranes in their front.They accreted to Laurussia during the Variscan orogeny.Some of them(Sebes-Lotru in South Carpathians and Baia de Aries in Apuseni mountains) underwent eclogite-grade metamorphism.The Danubian terranes,the Bretila terrane and the Somes terrane were intruded by Variscan granitoids.  相似文献   
3.
罗马尼亚Mircea Voda剖面黄土粒度特征及其成因指示   总被引:1,自引:0,他引:1  
Mircea Voda剖面是欧洲典型的黄土剖面之一,本文对Mircea Voda黄土剖面序列S0-S3进行了系统的粒度分析,并与中国黄土高原典型的黄土剖面洛川剖面、西峰剖面等进行了对比研究。结果显示,黄土粒度组成以粒径为4μm-63μm粉砂为主,其平均含量为78. 22%,呈现出风成成因的基本特征,且不同深度样品的粒度组成具有较高的均一性,显示该区黄土具有相同的物质来源。粒度频率曲线呈现为以突出的第一众数20μm~35μm,分选较好的单峰正偏态分布特征,说明粉尘在沉积之前经过了充分的混合。粒级主要组分集中在粗粒端,但在细粒端1μm附近存在第2个分量,这种特征与中国黄土高原黄土的粒度特征十分相似。计算得沉积物环境判别参数Y值均小于-2. 741 1,通过与水成沉积物判别值Y的比较,进一步证实了Mircea Voda剖面黄土为风成成因特征。  相似文献   
4.
5.
Diana Necea  W. Fielitz  L. Matenco   《Tectonophysics》2005,410(1-4):137-156
The Romanian East Carpathians display large-scale heterogeneities along the mountain belt, unusual foredeep geometries, significant post-collisional and neotectonic activity, and major variations in topography, mostly developed in the aftermath of late Miocene (Sarmatian; 11 Ma) subduction/underthrusting and continental collision between the East European/Scythian/Moesian foreland and the inner Carpathians Tisza-Dacia unit. In particular, the SE corner of the arcuate orogenic belt represents the place of still active large-scale differential vertical movements between the uplifting mountain chain and the subsiding Focşani foredeep basin. In this key area, we have analysed the configuration of the present day landforms and the drainage patterns in order to quantify the amplitude, timing and kinematics of these post-collisional late Pliocene–Quaternary vertical movements. A river network is incising in the upstream a high topography consisting of the external Carpathians nappes and the Pliocene–Lower Pleistocene sediments of the foreland. Further eastwards in the downstream, this network is cross-cutting a low topography consisting of the Middle Pleistocene–Holocene sediments of the foreland. Geological observations and well-preserved geomorphic features demonstrate a complex succession of geological structures. The late Pliocene–Holocene tectonic evolution is generally characterised by coeval uplift in the mountain chain and subsidence in the foreland. At a more detailed scale, these vertical movements took place in pulses of accelerated motion, with laterally variable amplitude both in space and in time. After a first late Pliocene uplifting period, subsidence took place during the Earliest Pleistocene resulting in a basal Quaternary unconformity. This was followed by two, quantifiable periods of increased uplift, which affected the studied area at the transition between the Carpathians orogen and the Focşani foreland basin in the late Early Pleistocene and the late Middle to late Pleistocene. Both large-scale deformation events affected the western Focşani basin flank, tilting the entire structure with 9° during the late Early Pleistocene and uplifted it as a block during the early Late Pleistocene. The late Early Pleistocene tilting resulted in 750 m uplift near the frontal monocline and by extrapolation in a presumed 3000 m uplift near the central parts of the Carpathians. The late Middle to late Pleistocene cumulative uplift reaches 250 m and correlates with a contemporaneous progradation of the uplifted areas towards the Focşani Basin. The uplifting events are separated by a second Quaternary unconformity. On the whole, the late Pliocene–Quaternary evolution of the Carpathians orogen/Focşani basin structure indicate large-scale differential uplift during the latest stages of a continuous post-collisional orogenic evolution.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号