首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   1篇
测绘学   13篇
大气科学   1篇
地球物理   5篇
地质学   10篇
天文学   3篇
  2020年   1篇
  2019年   1篇
  2017年   3篇
  2016年   3篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
  2010年   4篇
  2008年   2篇
  2007年   3篇
  2005年   2篇
  2004年   2篇
  2001年   3篇
  1999年   1篇
排序方式: 共有32条查询结果,搜索用时 531 毫秒
1.
The International Atomic Time scale (TAI) is computed by the Bureau International des Poids et Mesures (BIPM) from a set of atomic clocks distributed in about 40 time laboratories around the world. The time transfer between these remote clocks is mostly performed by the so-called GPS common view method: The clocks are connected to a GPS time receiver whose internal software computes the offsets between the remote clocks and GPS time. These data are collected in a standard formal called CCTF. In the present study we develop both the procedure and the software tool that allows us to generate the CCTF files needed for time transfer to TAI, using RINEX files produced by geodetic receivers driven by an external frequency. The CCTF files are then generated from the RINEX observation files. The software is freely available at ftp://omaftp.oma.be/dist/astro/time/RINEX_CCTF. Applied to IGS (International GPS Service) receivers, this procedure will provide a direct link between TAI and the IGS clock combination. We demonstrate here the procedure using the RINEX files from the Ashtech Metronome (ZXII-T) GPS receiver, to which we apply the conventional analysis to compute the CCTF data. We compared these results with the CCTF files produced by a time receiver R100-30T from 3S-Navigation. We also used this comparison with the results of a calibrated time receiver to determine the hardware delay of the geodetic receiver. ? 2001 John Wiley & Sons, Inc.  相似文献   
2.
When neglecting calibration issues, the accuracy of GPS-based time and frequency transfer using a combined analysis of code and carrier phase measurements highly depends on the noise of the GPS codes. In particular, the pseudorange noise is responsible for day-boundary discontinuities which can reach more than 1 ns in the time transfer results obtained from geodetic analysis. These discontinuities are caused by the fact that the data are analyzed in daily data batches where the absolute clock offset is determined by the mean code value during the daily data batch. This pseudorange noise is not a white noise, in particular due to multipath and variations of instrumental delays. In this paper, the pseudorange noise behavior is characterized in order to improve the understanding of the origin of the large day-boundary discontinuities in the geodetic time transfer results. In a first step, the effect of short-term noise and multipath is estimated, and shown to be responsible for only a maximum of 150 ps (picoseconds) of the day-boundary jumps, with only one exception at NRC1 where the correction provides a jump reduction of 300 ps. In a second step, a combination of time transfer results obtained with pseudoranges only and geodetic time transfer results is used to characterize the long-term evolution of pseudorange errors. It demonstrates that the day-boundary jumps, especially those of large amplitude, can be explained by an instrumental effect imposing a common behavior on all the satellite pseudoranges. Using known influences as temperature variations at ALGO or cable damages at HOB2, it is shown that the approach developed in this study can be used to look for the origin of the day-boundary discontinuities in other stations.  相似文献   
3.
To better understand how receiver antenna calibration models contribute to GPS positioning error budget, we compare station positions estimated with different calibration models: igs05.atx, igs08.atx and individual antenna calibrations. First, the impact of switching from the igs05.atx antenna calibration model to the igs08.atx antenna calibration model is investigated using the EUREF Permanent Network historical data set from 1996 until April 2011. It is confirmed that these position offsets can be effectively represented by the igs05.atx to igs08.atx latitude-dependent model. Then, we demonstrate that the position offsets resulting from the use of individual calibrations instead of type mean igs08.atx calibrations can reach up to 1 cm in the up component, while in the horizontal, the offsets generally stay below 4 mm. Finally, using six antennas individually calibrated by a robot as well as in an anechoic chamber, we observe a position agreement of 2 mm in the horizontal component and a bias of 5 mm in the up component. Larger position offsets, dependent on the antenna/radome type, are, however, found when these individual calibrations are compared to type mean calibrations of two tested antennas.  相似文献   
4.
In the southern part of the French Armorican massif, the Ligerian domain is located along the boundary between Gondwana and Armorica. Lithological, geochemical and structural data on the Saint-Georges-sur-Loire Unit, which is the northern part of the Ligerian domain, allow us to distinguish two sub-units. A southern sub-unit, formed by various blocks (chert, limestone, sandstone, rhyolite, mafic rocks) of Silurian to Middle Devonian age included as olistoliths in a Middle-Late Devonian terrigeneous matrix, overthrusts a sandstone-pelite northern sub-unit. Both units experienced two deformation events. The first one is a top-to-the-NW thrusting and the second one is a left-lateral wrenching. The Saint-Georges-sur-Loire Unit is an accretionary prism formed during the Late Devonian closure of the Layon rift, coeval with the main phase of the Variscan orogeny. The Layon rift, which according to the mafic olistoliths was partly floored by oceanic crust, appears as a buffer structural zone that accounts for the lack in Central Brittany of any tectonic or sedimentary echo of the closure of the Medio-European Ocean. The tectonic evolution of the Saint-Georges-sur-Loire Unit supports a polyorogenic model for this part of the Variscan Belt.  相似文献   
5.
Recent studies have shown the capabilities of Global Positioning System (GPS) carrier phases for frequency transfer based on the observations from geodetic GPS receivers driven by stable atomic clocks. This kind of receiver configuration is the kind primarily used within the framework of the International GPS Service (IGS). The International GPS Service/Bureau International des Poids et Mesures (IGS/BIPM) pilot project aims at taking advantage of these GPS receivers to enlarge the network of Time Laboratories contributing to the realization of the International Atomic Time (TAI). In this article, we outline the theory necessary to describe the abilities and limitations of time and frequency transfer using the GPS code and carrier phase observations. We report on several onsite tests and evaluate the present setup of our 12-channel IGS receiver (BRUS), which uses a hydrogen maser as an external frequency reference, to contribute to the IGS/BIPM pilot project. In the initial experimental setup, the receivers had a common external frequency reference; in the second setup, separate external frequency references were used. Independent external clock monitoring provided the necessary information to validate the results. Using two receivers with a common frequency reference and connected to the same antenna, a zero baseline, we were able to use the carrier phase data to derive a frequency stability of 6 × 10−16 for averaging times of one day. The main limitation in the technique originates from small ambient temperature variations of a few degrees Celsius. While these temperature variations have no effect on the functioning of the GPS receiver within the IGS network, they reduce the capacities of the frequency transfer results based on the carrier phase data. We demonstrate that the synchronization offset at the initial measurement epoch can be estimated from a combined use of the code and carrier phase observations. In our test, the discontinuity between two consecutive days was about 140 ps. ? 1999 John Wiley & Sons, Inc.  相似文献   
6.
Using the SPICAV-UV spectrometer aboard Venus Express in nadir mode, we were able to derive spectral radiance factors in the middle atmosphere of Venus in the 170-320 nm range at a spectral resolution of R ? 200 during 2006 and 2007 in the northern hemisphere. By comparison with a radiative transfer model of the upper atmosphere of Venus, we could derive column abundance above the visible cloud top for SO2 using its spectral absorption bands near 280 and 220 nm. SO2 column densities show large temporal and spatial variations on a horizontal scale of a few hundred kilometers. Typical SO2 column densities at low latitudes (up to 50°N) were found between 5 and 50 μm-atm, whereas in the northern polar region SO2 content was usually below 5 μm-atm. The observed latitudinal variations follow closely the cloud top altitude derived by SPICAV-IR and are thought to be of dynamical origin. Also, a sudden increase of SO2 column density in the whole northern hemisphere has been observed in early 2007, possibly related to a convective episode advecting some deep SO2 into the upper atmosphere.  相似文献   
7.
Through their consumption behavior, households are responsible for 72% of global greenhouse gas emissions. Thus, they are key actors in reaching the 1.5 °C goal under the Paris Agreement. However, the possible contribution and position of households in climate policies is neither well understood, nor do households receive sufficiently high priority in current climate policy strategies. This paper investigates how behavioral change can achieve a substantial reduction in greenhouse gas emissions in European high-income countries. It uses theoretical thinking and some core results from the HOPE research project, which investigated household preferences for reducing emissions in four European cities in France, Germany, Norway and Sweden. The paper makes five major points: First, car and plane mobility, meat and dairy consumption, as well as heating are the most dominant components of household footprints. Second, household living situations (demographics, size of home) greatly influence the household potential to reduce their footprint, even more than country or city location. Third, household decisions can be sequential and temporally dynamic, shifting through different phases such as childhood, adulthood, and illness. Fourth, short term voluntary efforts will not be sufficient by themselves to reach the drastic reductions needed to achieve the 1.5 °C goal; instead, households need a regulatory framework supporting their behavioral changes. Fifth, there is a mismatch between the roles and responsibilities conveyed by current climate policies and household perceptions of responsibility. We then conclude with further recommendations for research and policy.  相似文献   
8.
Through their consumption behavior, households are responsible for 72% of global greenhouse gas emissions. Thus, they are key actors in reaching the 1.5 °C goal under the Paris Agreement. However, the possible contribution and position of households in climate policies is neither well understood, nor do households receive sufficiently high priority in current climate policy strategies. This paper investigates how behavioral change can achieve a substantial reduction in greenhouse gas emissions in European high-income countries. It uses theoretical thinking and some core results from the HOPE research project, which investigated household preferences for reducing emissions in four European cities in France, Germany, Norway and Sweden. The paper makes five major points: First, car and plane mobility, meat and dairy consumption, as well as heating are the most dominant components of household footprints. Second, household living situations (demographics, size of home) greatly influence the household potential to reduce their footprint, even more than country or city location. Third, household decisions can be sequential and temporally dynamic, shifting through different phases such as childhood, adulthood, and illness. Fourth, short term voluntary efforts will not be sufficient by themselves to reach the drastic reductions needed to achieve the 1.5 °C goal; instead, households need a regulatory framework supporting their behavioral changes. Fifth, there is a mismatch between the roles and responsibilities conveyed by current climate policies and household perceptions of responsibility. We then conclude with further recommendations for research and policy.  相似文献   
9.
We calculate the chemical depletion fraction of the granitic bedrock by analysing the rock-soil enrichment of zirconium. In Vendée (France), chemical weathering rates account for 26% of the denudation rates. Such a chemical depletion fraction characterizes temperate regimes. It is three times lower than that of humid tropical regimes. To cite this article: J.-C. Maurin et al., C. R. Geoscience 337 (2005).  相似文献   
10.
Raindrop impact is an important process in soil erosion. Through its pressure and shear stress, raindrop impact causes a significant detachment of the soil material, making this material available for transport by sheet flow. Thanks to the accurate Navier–Stokes equations solver Gerris, we simulate the impact of a single raindrop of diameter D, at terminal velocity, on water layers of different thickness h: , , D, 2D, in order to study pressures and shear stresses involved in raindrop erosion. These complex numerical simulations help in understanding precisely the dynamics of the raindrop impact, quantifying in particular the pressure and the shear stress fields. A detailed analysis of these fields is performed and self‐similar structures are identified for the pressure and the shear stress on the soil surface. The evolution of these self‐similar structures are investigated as the aspect ratio h/D varies. We find that the pressure and the shear stress have a specific dependence on the ratio between the drop diameter and the water layer thickness, and that the scaling laws recently proposed in fluid mechanics are also applicable to raindrops, paving the road to obtain effective models of soil erosion by raindrops. In particular, we obtain a scaling law formula for the dependence of the maximum shear stress on the soil on the water depth, a quantity that is crucial for quantifying erosion materials. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号