首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
测绘学   2篇
大气科学   1篇
地质学   16篇
海洋学   2篇
综合类   1篇
自然地理   1篇
  2022年   2篇
  2020年   2篇
  2019年   2篇
  2018年   6篇
  2017年   3篇
  2016年   5篇
  2014年   1篇
  2008年   2篇
排序方式: 共有23条查询结果,搜索用时 31 毫秒
1.
In this research, ordered mesoporous silica, including MCM-41, was synthesized via sol–gel process and a propyl methacrylate-modified ordered mesoporous silica (MPS-MCM-41) was successfully synthesized via a postsynthesis grafting process. Then both MCM-41 and MPS-MCM-41 were characterized using FTIR, XRD, SEM and BET techniques. The synthesized materials were utilized as adsorbent for removal of diazinon pesticide from aqueous solutions. The effects of pH, contact time, adsorbent dose, initial concentration and temperature have been evaluated using removal efficiencies. Also, the kinetic, thermodynamic and isotherm models of diazinon adsorption were studied for the both MCM-41 and MPS-MCM-41. The results showed that the maximum adsorption capacities are 142 and 254 mg g?1 for the MCM-41 and MPS-MCM-41, respectively, at the initial concentration of 50 mg L?1, temperature of 298 K and adsorbent dose of 0.1 g L?1. The highest percentages of diazinon removal are 56.4 and 87.2 (at adsorbent dose of 2 g L?1 and the temperature of 318 K) for the MCM-41 and MPS-MCM-41, respectively. The Freundlich and Langmuir models are more compatible for describing equilibrium data of the diazinon adsorption capacity on the MCM-41 and MPS-MCM-41, respectively. Thermodynamic study indicated that the adsorption process of diazinon onto MCM-41 and MPS-MCM-41 is exothermic and has a spontaneous nature. The higher adsorption capacity and higher spontaneous nature of MPS-MCM-41 in comparison with MCM-41 might be due to the presence of the both hydrogen bonding and hydrophobic interaction between surface functional groups of MPS-MCM-41 (hydroxyl and propyl methacrylate) and diazinon functional groups.  相似文献   
2.
The dynamic behaviour of pile groups subjected to an earthquake base shaking is analysed. An analysis is formulated in the time domain and the effects of material nonlinearity of soil, pile–soil–pile kinematic interaction and the superstructure–foundation inertial interaction on seismic response are investigated. Prediction of response of pile group–soil system during a large earthquake requires consideration of various aspects such as the nonlinear and elasto‐plastic behaviour of soil, pore water pressure generation in soil, radiation of energy away from the pile, etc. A fully explicit dynamic finite element scheme is developed for saturated porous media, based on the extension of the original formulation by Biot having solid displacement (u) and relative fluid displacement (w) as primary variables (uw formulation). All linear relative fluid acceleration terms are included in this formulation. A new three‐dimensional transmitting boundary that was developed in cartesian co‐ordinate system for dynamic response analysis of fluid‐saturated porous media is implemented to avoid wave reflections towards the structure. In contrast to traditional methods, this boundary is able to absorb surface waves as well as body waves. The pile–soil interaction problem is analysed and it is shown that the results from the fully coupled procedure, using the advanced transmitting boundary, compare reasonably well with centrifuge data. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
3.
Although the effects of nontraditional stabilizers on the geotechnical properties of tropical soils has been the issue of investigation in recent years, the micro-structural characteristics of nontraditional soil additives and in particular selected additive (TX-85) have not been fully studied. Nontraditional soil stabilization additives are widely used for stabilizing marginal materials. These additives are low-cost alternatives to traditional construction materials and have different compositions. They also differ from one another while interacting with soil. In line with that, it was the objective of this research to investigate the strength properties and physicochemical mechanisms related to tropical laterite soil mixed with the liquid stabilizer TX-85. Macro-structure study, i.e., compaction, and unconfined compression strength test were used to assess the engineering and shear properties of the stabilized laterite soil. In addition, the possible mechanisms that contributed to the stabilization process were discussed using various spectroscopic and microscopic techniques such as X-ray diffractometry (XRD), energy-dispersive X-ray spectrometry, scanning electron microscopy, and Fourier transform infrared spectroscopy. From engineering point of view, the results indicated that the strength of TX-85 stabilized laterite soil improved significantly. The degree of improvement was approximately four times stronger than natural soil after a 7-day curing period. The XRD showed no crystalline products (gel form). Moreover, weathering effects were obvious in TX-85 treated samples in most of clay minerals’ peak intensities. These effects were reduced especially for kaolinite mineral inside the soil with curing time.  相似文献   
4.
Armor is a pavement made of erosion-resistant materials like a stone or concrete that is constructed to protect breakwater, coasts, and other coastal line features against erosion. These armors are a kind of protective layer made of stone or concrete, used in breakwater constructions or coastal lines, arrayed with specific regular or irregular pattern on the breakwater or the coast. The antifer concrete blocks have almost cubic form, often changed into frustum by adding inclined plates to their sides. One of the most important advantages of these armors is their diversified regular and irregular placement patterns. In this study, using the physical modeling and different tests, the stability level of antifer concrete blocks was evaluated considering the decrease of the armor weight. Results of this study show that by a 10% decrease in the block weight, the failure graph slope is increased and the damage is intensified.  相似文献   
5.
Natural Hazards - On March 25, 2019, widespread flood events occurred across Iran’s provinces and set a new record for socioeconomic losses and casualties. In hindsight, it opened an...  相似文献   
6.
Nel  Christo  Guan  Zhiqiang  Lu  Yuanshen  Hooman  Kamel 《Mathematical Geosciences》2019,51(3):337-351
Mathematical Geosciences - Natural draft dry cooling towers (NDDCTs) are a type of cooling technology used in thermal power plants, including geothermal power plants. Interest from industry in this...  相似文献   
7.
Natural Hazards - Analysis of the run-out of landslides is essential and vital for disaster mitigation. However, accurate run-out analysis is difficult because of the uncertainty of earthquake...  相似文献   
8.
Latifi  K.  Sadidkhouy  A.  Ghassemi  M. R. 《Geotectonics》2019,53(3):433-447
Geotectonics - We present a new technique for shear wave splitting analysis in anisotropic mantle by combining the splitting analysis of Ps phases in receiver functions and SKS splitting analysis....  相似文献   
9.
We used a full remote sensing-based approach to assess plant species diversity in large and inaccessible areas affected by Lantana camara L., a common invasive species within the deciduous forests of Western Himalayan region of India, using spectral heterogeneity information extracted from optical data. The spread of L. camara was precisely mapped by Pléiades 1A data, followed by comparing Pléiades 1A, RapidEye and Landsat-8 OLI – assessed plant species diversities in invaded areas. The single plant species analysis was improved by Pléiades 1A-based diversity analysis, and higher species diversity values were observed for mixed vegetation cover. Furthermore, lower Coefficient of Variation and Renyi diversity values were observed where L. camara was the only species, while higher variations were observed in areas with a mixed spectral reflectance. This study was concluded to add a crucial baseline to the previous studies on remote sensing-based solutions for rapid estimation of biodiversity attributes.  相似文献   
10.
Non-traditional soil stabilizers are widely used for treating weak materials. These additives are cost- and time-effective alternatives to more traditional materials such as lime and cement. It has been well established that the treatment of natural soil with chemical additives will gradually affect the size, shape, and arrangement of soil particles. Furthermore, the degree of improvement is dependent on the quantity and the pattern of new products formed on and around the soil particles. In this paper, unconfined compressive strength (UCS) test was performed as an index of soil improvement on mix designs treated with calcium-based powder stabilizer (SH-85). The time-dependent changes in shear strength parameter and compressibility behavior of treated soil were also studied using standard direct shear and one-dimensional consolidation tests. In order to better understand the shape and surface area of treated particles, FESEM, N2-BET, and particle size distribution analysis were performed on soil-stabilizer matrix. From engineering standpoint, the UCS results showed that the degree of improvement for SH-85-stabilized laterite soil was roughly five times stronger than the untreated soil at the early stages of curing (7-day period). Also, a significant increase in the compressibility resistance of treated samples with curing time was observed. Based on the results, less porous and denser soil fabric was seen on the surface of clay particles. FESEM images of the treated mix designs showed the formation of white lumps in the soil fabric with the cementitious gel filling the pores in the soil structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号