首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   138篇
  免费   8篇
  国内免费   6篇
测绘学   9篇
大气科学   11篇
地球物理   24篇
地质学   75篇
海洋学   4篇
天文学   23篇
综合类   3篇
自然地理   3篇
  2023年   1篇
  2022年   4篇
  2021年   10篇
  2020年   6篇
  2019年   7篇
  2018年   8篇
  2017年   10篇
  2016年   10篇
  2015年   1篇
  2014年   10篇
  2013年   15篇
  2012年   14篇
  2011年   6篇
  2010年   4篇
  2009年   4篇
  2008年   6篇
  2007年   3篇
  2006年   8篇
  2005年   1篇
  2004年   1篇
  2003年   5篇
  2002年   4篇
  2000年   1篇
  1999年   1篇
  1996年   1篇
  1995年   3篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1983年   1篇
  1974年   1篇
排序方式: 共有152条查询结果,搜索用时 15 毫秒
1.
Y.C. Minh  W.M. Irvine   《New Astronomy》2006,11(8):594-599
The large-scale structure associated with the 2′N HNCO peak in Sgr B2 [Minh, Y.C., Haikala, L., Hjalmarson, Å., Irvine, W.M., 1998. ApJ 498, 261 (Paper I)] has been investigated. A ring-like morphology of the HNCO emission has been found; this structure may be colliding with the Principal Cloud of Sgr B2. This “HNCO Ring” appears to be centered at (l,b) = (0.7°,−0.07°), with a radius of 5 pc and a total mass of 1.0 × 105 to 1.6 × 106 M. The expansion velocity of the Ring is estimated to be 30–40 km s−1, which gives an expansion time scale of 1.5 × 105 year. The morphology suggests that collision between the Ring and the Principal Cloud may be triggering the massive star formation in the Sgr B2 cloud sequentially, with the latest star formation taking place at the 2′N position. The chemistry related to HNCO is not certain yet, but if it forms mainly via reaction with the evaporated OCN from icy grain mantles, the observed enhancement of the HNCO abundance can be understood as resulting from shocks associated with the collision between the Principal Cloud and the expanding HNCO Ring.  相似文献   
2.
A survey of the 4(04)-3(03) and 1(01)-0(00) transitions of HOCO+ has been made toward several molecular clouds. The HOCO+ molecule was not observed in any sources except Sgr B2 and Sgr A. The 5(05)-4(04) and 4(14)-3(13) transitions were also detected toward Sgr B2. The results indicate that gas phase CO2 is not a major carbon reservoir in typical molecular clouds. In Sgr B2, the HOCO+ antenna temperature exhibits a peak approximately 2' north of the Sgr B2 central position (Sgr B2[M]) and the 4(04)-3(03) line emission is extended over a approximately 10' x 10' region. The column density of HOCO+ at the northern peak in Sgr B2 is approximately 3 x 10(14) cm-2, and the fractional abundance relative to H2 > or = 3 x 10(-10), which is about 2 orders of magnitude greater than recent predictions of quiescent cloud ion-molecule chemistry.  相似文献   
3.
4.
5.
Parameter identification for lined tunnels in a viscoplastic medium   总被引:2,自引:0,他引:2  
This paper is dedicated to the identification of constitutive parameters of elasto‐viscoplastic constitutive law from measurements performed on deep underground cavities (typically tunnels). This inverse problem is solved by the minimization of a cost functional of least‐squares type. The exact gradient is computed by the direct differentiation method and the descent is done using the Levenberg–Marquardt algorithm. The method is presented for lined or unlined structures and is applied for an elastoviscoplastic constitutive law of the Perzyna class. Several identification problems are presented in one and two dimensions for different tunnel geometries. The used measurements have been obtained by a preliminary numerical simulation and perturbed with a white noise. The identified responses match the measurements. We also discuss the usage of the sensitivity analysis of the system, provided by the direct differentiation method, for the optimization of in situ monitoring. The sensitivity distribution in space and time assess the location of the measurements points as well as the time of observation needed for reliable identification. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
6.
7.
Sediments from the Red River and from an adjacent floodplain aquifer were investigated with respect to the speciation of Fe and As in the solid phase, to trace the diagenetic changes in the river sediment upon burial into young aquifers, and the related mechanisms of arsenic release to the groundwater. Goethite with subordinate amounts of hematite were, using Mössbauer spectroscopy, identified as the iron oxide minerals present in both types of sediment. The release kinetics of Fe, As, Mn and PO4 from the sediment were investigated in leaching experiments with HCl and 10 mM ascorbic acid, both at pH 3. From the river sediments, most of the Fe and As was mobilized by reductive dissolution with ascorbic acid while HCl released very little Fe and As. This suggests As to be associated with an Fe-oxide phase. For oxidized aquifer sediment most Fe was mobilized by ascorbic acid but here not much As was released. However, the reduced aquifer sediments contained a large pool of Fe(II) and As that is readily leached by HCl, probably derived from an unidentified authigenic Fe(II)-containing mineral which incorporates As as well. Extraction with ascorbic acid indicates that the river sediments contain both As(V) and As(III), while the reduced aquifer sediment almost exclusively releases As(III). The difference in the amount of Fe(II) leached from river and oxidized aquifer sediments by ascorbic acid and HCl, was attributed to reductive dissolution of Fe(III). The reactivity of this pool of Fe(III) was quantified by a rate law and compared to that of synthetic iron oxides. In the river mud, Fe(III) had a reactivity close to that of ferrihydrite, while the river sand and oxidized aquifer sediment exhibited a reactivity ranging from lepidocrocite or poorly crystalline goethite to hematite. Mineralogy by itself appears to be a poor predictor of the iron oxide reactivity in natural samples using the reactivity of synthetic Fe-oxides as a reference. Sediments were incubated, both unamended and with acetate added, and monitored for up to 2 months. The river mud showed the fastest release of both Fe and As, while the effect of acetate addition was minor. This suggests that the presence of reactive organic carbon is not rate limiting. In the case of the river and aquifer sediments, the release of Fe and As was always stimulated by acetate addition and here reactive organic carbon was clearly the rate limiting factor. The reduced aquifer sediment apparently can sustain slower but prolonged microbially-driven release of As. The highly reactive pools of Fe(III) and As in the river mud could be due to reoxidation of As and Fe contained in the reducing groundwater from the floodplain aquifers that are discharging into the river. Deposition of the suspended mud on the floodplain during high river stages is proposed to be a major flux of As onto the floodplain and into the underlying aquifers.  相似文献   
8.
This study aims to provide knowledge on the thermo-mechanical behaviour of heat exchanger piles, through a laboratory scale model. The model pile (20 mm in external diameter) was embedded in dry sand. The behaviour of the axially loaded pile under thermal cycles was investigated. After applying the axial load on the pile head, the pile temperature was varied between 5 and 30 °C. Seven tests, corresponding to various axial loads ranging from 0 to 70 % of the pile estimated bearing capacity, were performed. The results on pile head displacement show that heating under low axial load induced heave and cooling induced settlement; the pile temperature-displacement curve was found to be reversible and compatible with the thermal expansion curve of the pile. However, at higher axial loads, irreversible settlement of the pile head was observed after a few thermal cycles. The axial load profile measured by the strain gauges evidenced that the pile head load was mainly transferred to the pile toe. Nevertheless, thermal cycles modified significantly the mobilised skin friction along the pile. The total pressure measured at various locations in the soil mass was also slightly influenced by the thermal cycles.  相似文献   
9.
10.
Leakage is one of the main concerns of all parties involved with the development of Carbon Capture and Storage. From an economic point of view, van der Zwaan and Gerlagh (2009) suggest that CCS remains a valuable option even with CO2 leakage rate as high as of a few % per year. But what is valuable is, ultimately, determined by social preferences and parameters that are beyond economic modeling. Examining the point of view of four stakeholder groups: industry, policy-makers, environmental NGOs and the general public, we conclude that there is a social agreement today: zero is the only acceptable carbon leakage rate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号