首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   3篇
测绘学   6篇
大气科学   29篇
地球物理   23篇
地质学   33篇
海洋学   3篇
天文学   2篇
自然地理   6篇
  2023年   3篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   5篇
  2017年   5篇
  2016年   8篇
  2015年   2篇
  2014年   5篇
  2013年   5篇
  2012年   7篇
  2011年   3篇
  2010年   2篇
  2009年   8篇
  2008年   6篇
  2007年   4篇
  2006年   4篇
  2005年   5篇
  2004年   1篇
  2003年   3篇
  2002年   5篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1970年   1篇
  1966年   2篇
  1954年   1篇
  1950年   1篇
  1949年   1篇
排序方式: 共有102条查询结果,搜索用时 15 毫秒
1.
The use of Boomer sources for 3D seismic imaging of shallow marine structures was investigated in a feasibility study. Boomers show sufficient stability to be used in multichannel seismic surveys. The acquisition of a high-frequency, densely sampled seismic data volume was successfully performed in the Baltic Sea. A Pleistocene fluvial channel system and shallow gas accumulations were revealed beneath the unconsolidated sediments which constitute the sea-floor in the southern Kiel Bay.  相似文献   
2.
Diatoms, Cladocera, and chironomids preserved in the sediments of Lake Dalgoto were studied to reconstruct the history of the lake ecosystem in the context of the vegetation history as represented by the pollen stratigraphy. Younger Dryas silty sediments at the base of the core are characterized by low diversity of aquatic organisms. The transition to the Holocene is indicated by a sharp change from silt to clay-gyttja. The migration and expansion of trees at lower elevations between 10200 and 8500 14C-yr BP, along with higher diversities and concentrations of aquatic organisms and the decreased proportion of north-alpine diatoms, point to rapidly rising summer temperatures. After 6500 14C-yr BP the expansion of Pinus mugo in the catchment coincides with signs of natural eutrophication as recorded by an increase of planktonic diatoms. In the late Holocene (4000–0 14C-yr BP) Pinus peuce and Abies are reduced and Picea expands. Cereal grains and disturbance indicators suggest late-Holocene human modification of the vegetation.  相似文献   
3.
The Permocarboniferous basins in Northeast Germany formed on the heterogeneous and eroded parts of the Variscan orogene and its deformed northern foreland. Transtensional tectonic movements and thermal re-equilibration lead to medium-scale crustal fragmentation, fast subsidence rates and regional emplacement of large amounts of mostly acidic volcanics. The later basin formation and differentiation was triggered by reversals of the large-scale stress field and reactivation of prominent zones of weakness like the Elbe Fault System and the Rhenohercynian/Saxothuringian boundary that separate different Variscan basement domains in the area. The geomechanical behaviour of the latter plays an important role for the geodynamic evolution of the medium to large-scale structural units, which we can observe today in three dimensions on structural maps, geophysical recordings and digital models. This study concentrates on an area that comprises the southern Northeast German Basin, the Saale Basin, the Flechtingen High, the Harz Mountains High and the Subhercynian Basin. The presented data include re-evaluations of special geological and structural maps, the most recent interpretation of the DEKORP BASIN 9601 seismic profile and observations of exposed rock sections in Northeast Germany. On the basis of different structural inventories and different basement properties, we distinguish two structural units to the south and one structural unit to the north of the Elbe Fault System. For each unit, we propose a geomechanical model of basin formation and basin inversion, and show that the Rhenohercynian Fold and Thrust Belt domain is deformed in a thin-skinned manner, while the Mid-German Crystalline Rise Domain, which is the western part of the Saxothuringian Zone, rather shows a thick-skinned deformation pattern. The geomechanical model for the unit north to the Elbe Fault System takes account to the fact that the base of the Zechstein beneath the present Northeast German basin shows hardly any evidence for brittle deformation, which indicates a relative stable basement. Our geomechanical model suggests that the Permocarboniferous deposits may have contributed to the structural stiffness by covering small to medium scale structures of the upper parts of the brittle basement. It is further suggested that the pre-Zechstein successions underneath the present Northeast German basin were possibly strengthening during the Cretaceous basin inversion, which resulted in stress transfer to the long-lived master faults, as indicated for example by the shape of the salt domes in the vicinity of the latter faults. Contrary to this, post-Zechstein successions deformed in a different and rather complex way that was strongly biased by intensive salt tectonic movements.  相似文献   
4.
A case study of warm air advection over the Arctic marginalsea-ice zone is presented, based on aircraft observations with direct flux measurements carriedout in early spring, 1998. A shallow atmospheric boundary layer (ABL) was observed, which wasgradually cooling with distance downwind of the ice edge. This process was mainly connected with astrong stable stratification and downward turbulent heat fluxes of about 10–20 W m-2, but wasalso due to radiative cooling. Two mesoscale models, one hydrostatic and the other non-hydrostatic,having different turbulence closures, were applied. Despite these fundamental differences betweenthe models, the results of both agreed well with the observed data. Various closure assumptions had amore crucial influence on the results than the differences between the models.Such an assumption was, for example,the parameterization of the surface roughness for momentum (z0) and heat (zT). This stronglyaffected the wind and temperature fields not only close to the surface but also within and abovethe temperature inversion layer. The best results were achieved using a formulation for z0 that took intoaccount the form drag effect of sea-ice ridges together withzT = 0.1z0. The stability within theelevated inversion strongly depended on the minimum eddy diffusivity Kmin. A simple ad hocparameterization seems applicable, where Kmin is calculated as 0.005 timesthe neutral eddy diffusivity. Although the longwave radiative cooling was largest within the ABL, theapplication of a radiation scheme was less important there than above the ABL. This was related to theinteraction of the turbulent and radiative fluxes. To reproduce the strong inversion, it wasnecessary to use vertical and horizontal resolutions higher than those applied in most regional andlarge-scale atmospheric models.  相似文献   
5.
Landslide deposits dam Lake Oeschinen (Oeschinensee), located above Kandersteg, Switzerland. However, past confusion differentiating deposits of multiple landslide events has confounded efforts to quantify the volume, age, and failure dynamics of the Oeschinensee rock avalanche. Here we combine field and remote mapping, topographic reconstruction, cosmogenic surface exposure dating, and numerical runout modeling to quantify salient parameters of the event. Differences in boulder lithology and deposit morphology reveal that the landslide body damming Oeschinensee consists of debris from both an older rock avalanche, possibly Kandertal, as well as the Oeschinensee rock avalanche. We distinguish a source volume for the Oeschinensee event of 37 Mm3, resulting in an estimated deposit volume of 46 Mm3, smaller than previous estimates that included portions of the Kandertal mass. Runout modeling revealed peak and average rock avalanche velocities of 65 and 45 m/s, respectively, and support a single-event failure scenario. 36Cl surface exposure dating of deposited boulders indicates a mean age for the rock avalanche of 2.3 ± 0.2 kyr. This age coincides with the timing of a paleo-seismic event identified from lacustrine sediments in Swiss lakes, suggesting an earthquake trigger. Our results help clarify the hazard and geomorphic effects of rare, large rock avalanches in alpine settings.  相似文献   
6.
Here we report on a set of six apatite reference materials (chlorapatites MGMH#133648, TUBAF#38 and fluorapatites MGMH#128441A, TUBAF#37, 40, 50) which we have characterised for their chlorine isotope ratios; these RMs span a range of Cl mass fractions within the apatite Ca10(PO4)6(F,Cl,OH)2 solid solution series. Numerous apatite specimens, obtained from mineralogical collections, were initially screened for 37Cl/35Cl homogeneity using SIMS followed by δ37Cl characterisation by gas source mass spectrometry using both dual‐inlet and continuous‐flow modes. We also report major and key trace element compositions as determined by EPMA. The repeatability of our SIMS results was better than ± 0.10‰ (1s) for the five samples with > 0.5 % m/m Cl and ± 0.19‰ (1s) for the low Cl abundance material (0.27% m/m). We also observed a small, but significant crystal orientation effect of 0.38‰ between the mean 37Cl/35Cl ratios measured on three oriented apatite fragments. Furthermore, the results of GS‐IRMS analyses show small but systematic offset of δ37ClSMOC values between the three laboratories. Nonetheless, all studied samples have comparable chlorine isotope compositions, with mean 103δ37ClSMOC values between +0.09 and +0.42 and in all cases with 1s ≤ ± 0.25.  相似文献   
7.
Particulate emissions from Mt. Etna in the fine-size range below 100 nm were studied in June and September 1989. The aerosol particles were characterized by size, concentration and photoelectric activity. These quantities are sensitive to the physical and chemical properties of the magma. Concentrations varied from 104 to 107 cm-3. The size distributions peak below 20 nm (radius) and are very narrow. The particles are generated mainly by nucleation and condensation of magmatic volatiles in a strong temperature gradient. The photoelectric activity of these particles can indicate high magma levels and increased exsolution of volatiles. It is therefore related to the observed activity of the respective crater and may be helpful as a prediction tool when used in conjunction with other volcano-monitoring techniques.  相似文献   
8.
  The Western Alps are among the best studied collisional belts with both detailed structural mapping and also crustal geophysical investigations such as the ECORS and EGT seismic profile. By contrast, the present-day kinematics of the belt is still largely unknown due to small relative motions and the insufficient accuracy of the triangulation data. As a consequence, several tectonic problems still remain to be solved, such as the amount of N–S convergence in the Occidental Alps, the repartition of the deformation between the Alpine tectonic units, and the relation between deformation and rotation across the Alpine arc. In order to address these problems, the GPS ALPES group, made up of French, Swiss and Italian research organizations, has achieved the first large-scale GPS surveys of the Western Alps. More than 60 sites were surveyed in 1993 and 1998 with a minimum observation of 3 days at each site. GPS data processing has been done by three independent teams using different software. The different solutions have horizontal repeatabilities (N–E) of 4–7 mm in 1993 and 2–3 mm in 1998 and compare at the 3–5-mm level in position and 2-mm/yr level in velocity. A comparison of 1993 and 1998 coordinates shows that residual velocities of the GPS marks are generally smaller than 2 mm/yr, precluding a detailed tectonic interpretation of the differential motions. However, these data seem to suggest that the N–S compression of the Western Alps is quite mild (less than 2 mm/yr) compared to the global convergence between the African and Eurasian plate (6 mm/yr). This implies that the shortening must be accomodated elsewhere by the deformation of the Maghrebids and/or by rotations of Mediterranean microplates. Also, E–W velocity components analysis supports the idea that E–W extension exists, as already suggested by recent structural and seismotectonic data interpretation. Received: 27 November 2000 / Accepted: 17 September 2001  相似文献   
9.
The mechanisms involved in the glacial inception are still poorly constrained due to a lack of high resolution and cross-dated climate records at various locations. Using air isotopic measurements in the recently drilled NorthGRIP ice core, we show that no evidence exists for stratigraphic disturbance of the climate record of the last glacial inception (∼123–100 kyears BP) encompassing Dansgaard–Oeschger events (DO) 25, 24 and 23, even if we lack sufficient resolution to completely rule out disturbance over DO 25. We quantify the rapid surface temperature variability over DO 23 and 24 with associated warmings of 10±2.5 and 16±2.5°C, amplitudes which mimic those observed in full glacial conditions. We use records of δ18O of O2 to propose a common timescale for the NorthGRIP and the Antarctic Vostok ice cores, with a maximum uncertainty of 2,500 years, and to examine the interhemispheric sequence of events over this period. After a synchronous North–South temperature decrease, the onset of rapid events is triggered in the North through DO 25. As for later events, DO 24 and 23 have a clear Antarctic counterpart which does not seem to be the case for the very first abrupt warming (DO 25). This information, when added to intermediate levels of CO2 and to the absence of clear ice rafting associated with DO 25, highlights the uniqueness of this first event, while DO 24 and 23 appear similar to typical full glacial DO events.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号