首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   1篇
大气科学   2篇
地球物理   7篇
地质学   5篇
海洋学   2篇
综合类   1篇
自然地理   1篇
  2015年   1篇
  2014年   1篇
  2013年   4篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2002年   1篇
  1997年   1篇
排序方式: 共有18条查询结果,搜索用时 421 毫秒
1.
Effects of climate change on coastal fresh groundwater resources   总被引:1,自引:0,他引:1  
This study evaluates the impacts of climate change on fresh groundwater resources specifically salinity intrusion in water resources stressed coastal aquifers. Our assessment used the Hadley Centre climate model, HadCM3 with high and low emission scenarios (SRES A2 and B2) for years 2000–2099. In both scenarios, the annual fresh groundwater resources losses indicate an increasing long-term trend in all stressed areas, except in the northern Africa/Sahara region. We also found that precipitation and temperature individually did not show good correlations with fresh groundwater loss. However, the relationship between the aridity index and fresh groundwater loss exhibited a strong negative correlation. We also discuss the impacts of loss of fresh groundwater resources on socio-economic activities, mainly population growth and per capita fresh groundwater resources.  相似文献   
2.
Various frameworks related to climate change and adaptations that have been developed to date have notable benefits as well as significant limitations. It is not always practical to implement advanced climate change frameworks in situations with limited data availability. Social aspects, such as people’s experience and perception, are often under-prioritized. Therefore, this study introduces an integrated framework linking social and physical aspects of climate change to assess its impacts on water resources and to evaluate differing adaptation options in poorly gauged basins. A case study of the Kali Gandaki River Basin (KGRB) in western Nepal is presented to demonstrate the applicability of this framework. Results of the study show that people of the mountainous Mustang district in the KGRB have perceived climate change or climate variability, its impacts on water resources, as well as other water-related issues and potential adaptations or responses. Furthermore, evaluation of people’s perception using available physical data confirms the increase in temperature and average annual discharge in the Kali Gandaki River as well as poor water use, as a major problem at all levels in the basin. Despite increasing water availability, a concurrent increase in water use is difficult due to topographic constraints on irrigation development. However, the impacts of climate change are particularly severe in Mustang, owing to the fact that a large proportion of the population depends on a climate-sensitive livelihood like agriculture. Therefore, various adaptation options are identified in the agricultural sector, and one relevant option is further evaluated. The framework developed in this study has the potential to be further applied to other poorly gauged basins.  相似文献   
3.
The 1995 Kobe earthquake seriously damaged numerous buildings with pile foundations adjacent to quay walls. The seismic behavior of a pile group is affected by movement of quay walls, pile foundations, and liquefied backfill soil. For such cases, a three-dimensional (3-D) soil–water coupled dynamic analysis is a promising tool to predict overall behavior. We report predictions of large shake table test results to validate 3-D soil–water coupled dynamic analyses, and we discuss liquefaction-induced earth pressure on a pile group during the shaking in the direction perpendicular to ground flow. Numerical analyses predicted the peak displacement of footing and peak bending moment of the group pile. The earth pressure on the pile in the crustal layer is most important for the evaluation of the peak bending moment along the piles. In addition, the larger curvatures in the bending moment distribution along the piles at the water side in the liquefied ground were measured and predicted.  相似文献   
4.
5.
The three-dimensional thin layer element method is formulated for the dynamic response analysis of an axi-symmetric structure in submerged soil. Biot's wave equation for fluid-filled porous medium is used in the formulation. The three-dimensional thin layer element method computes the wave numbers and their associated mode shapes, for both Rayleigh waves and Love waves in submerged soil, which define the characteristics of the waves. The submerged condition affects the characteristics of the Rayleigh waves in soil. As a result, it alters substantially the soil-structure interaction stresses if the permeability of the soil is relatively large and, to less extent, the response of the structure. The thin layer element method is far more efficient than the finite element method for analyzing the fluid-filled porous medium, yet capable of taking into account a multi-layered inhomogeneous soil.  相似文献   
6.
This paper focuses on the geometry modelling and numerical analysis of microstructures of geomaterials employing the concept of image‐based engineering. The novel modelling and analysis techniques with digital images are incorporated with the mathematical homogenization method to study the interaction between individual phases, each of whose shape and spatial distribution are irregular. Owing to the distinctive features of these computational techniques, the evaluation of homogenized properties for geomaterials provides the reliable information about the micro‐ or macroscopic mechanical behaviours for engineering practice. It is, naturally, inevitable that engineers' demands on safety and efficient design place emphasis on quantitative estimates for these values. Thus, calibration accompanied with actual measurements comes within the scope of this study so that these properties would be realistic and practical from the engineering viewpoints. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
7.
The spatial and temporal distribution of the snow water equivalent (SWE), snow density and snow depth were estimated by a method combining remote sensing technology and degree‐day techniques over a study area of 370 000 km2. The advantages of this simulation model are its simplicity and the availability of degree‐day parameters, which can be successively evaluated by referring to snow area maps created from satellite images. This simulation worked very well for estimating SWE and helped to separate the areas of thin snow cover from heavier snowfall. However, shallow snow in warm regions led to some misjudgments in the snow area maps because of the time lag between when the satellite image was acquired and the simulation itself. Vulnerable areas, where a large variation in the amount of snow affects people's life, could be identified from the differences between heavy and light snow years. This vulnerability stems from a predicted lack of irrigation water for rice production caused by future climate change. The model developed in this study has the potential to contribute to water management activities and decision‐making processes when considering necessary adaptations to future climate change. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
8.
Evaluation of groundwater environment of Kathmandu Valley   总被引:1,自引:1,他引:0  
Kathmandu Valley aquifer in central Nepal is continuously under stress since the commencement of mechanized extraction of groundwater resources in early 1970s. Many wells have been drilled in shallow and deep aquifers of the valley; and numerous studies have been made in last four decades to understand the aquifers. However, up-to-date information on well inventory, water extraction, water quality and overall situation of groundwater environment are not yet known in the absence of institutional responsibility in groundwater management. This study attempts to evaluate current state of the groundwater environment considering natural and social system together; to better understand origin of stresses, their state, expected impact and responses made/needed to restore healthy groundwater environment. The analysis reveals increasing population density (3,150–4,680 persons/km2), urbanization (increase in urban population from 0.61 to 1.29 million) and increasing number of hotels due to tourism (23–62 hotels) during a decade are acting as driving forces to exceed groundwater extraction over recharge (extraction = 21.56 and recharge = 9.6 million-cubic meter-a-year), decrease in groundwater levels (13–33 m during 1980–2000 and 1.38–7.5 m during 2000–2008), decline in well yield (4.97–36.17 l/s during mid-1980s to 1998) and deterioration in water quality. In the absence of immediate management intervention with institutional responsibility for groundwater development, regulation and knowledgebase management (i.e. to facilitate collection, integration and dissemination of knowledge); situation of groundwater environment are expected to deteriorate further. Groundwater modeling approach may help to suggest appropriate management intervention under current and expected future conditions.  相似文献   
9.
Based on measured stream nitrogen concentrations at outlets of 12 small sub‐areas (1·3–54·7 km2) in a largely forested catchment during the base flow period, we investigated the influences of discharges and different catchment characteristics on stream nitrogen concentration. Our field surveys were carried out during the 11‐month's period from April 2001 to February 2002 and the correlations between nitrogen concentrations and catchment characteristics were studied. The results showed that the vegetation cover was strongly correlated to total nitrogen (TN) and nitrate + nitrite ? nitrogen (NOx‐N) concentrations. That is, the TN and NOx‐N concentrations had positive correlations with mean normalized difference vegetation cover index (NDVI) of each sub‐area during dormant seasons (mean NDVI < 0 · 70) and had negative correlations during the growing season (mean NDVI ≥ 0 . 70). The significance of catchment characteristics to TN and NOx‐N concentrations was ranked as vegetation cover > soil > topography > land use, and the best models can account for 55–64% of the variance of TN and NOx‐N concentrations. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
10.
Abstract This paper reports the results of field-based absolute gravity measurements aimed at detecting gravity change and crustal displacement caused by glacial isostatic adjustment. The project was initiated within the framework of the 53rd Japanese Antarctic Research Expedition (JARE53). Absolute gravity measurements, together with GPS measurements, were planned at several outcrops along the Prince Olav Coast and S6ya Coast of East Antarctica, including at Syowa Station. Since the icebreaker Shirase (AGB 5003) was unable to moor alongside Syowa Station, operations were somewhat restricted during JARE53. However, despite this setback, we were able to complete measurements at two sites: Syowa Station and Langhovde. The absolute gravity value at the Syowa Station IAGBN (A) site, observed using an FG-5 absolute gravimeter (serial number 210; FG-5 #210), was 982 524 322.7+0.1 ktGal, and the gravity change rate at the beginning of 2012 was -0.26 gGal.a-1. An absolute gravity value of 982 535 584.2~0.7 ktGal was obtained using a portable A-10 absolute gravimeter (serial number 017; A-10 #017) at the newly located site AGS01 in Langhovde.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号