首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   7篇
测绘学   2篇
大气科学   5篇
地球物理   20篇
地质学   25篇
海洋学   16篇
天文学   5篇
自然地理   5篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2012年   4篇
  2011年   3篇
  2010年   4篇
  2009年   7篇
  2008年   5篇
  2007年   5篇
  2006年   2篇
  2005年   4篇
  2004年   4篇
  2003年   3篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1997年   1篇
  1996年   4篇
  1992年   1篇
  1990年   2篇
  1989年   1篇
  1986年   3篇
  1984年   1篇
  1975年   1篇
  1960年   1篇
排序方式: 共有78条查询结果,搜索用时 15 毫秒
1.
The transition from P213(T 4) to P212121(D 2 4 ) in the langbeinite K2Cd2(SO4)3 has been analyzed using group theoretical methods and previously published structural data above and below the transition. We find that because the transition is strongly first-order, the primary-order parameter has relatively large values at the transition temperature, and higher order terms which involve the order parameter, the strain, and the coupling of the two must be included in the Landau expansion for the free energy. Complex displacements occur at the transition for all atoms of the unit cell, but these displacements can be resolved into contributions which can be shown from symmetry considerations to transform as the 2 3 irrep of P2 1 3(T 4) as well as contributions from symmetry-preserving displacements which transform under the irrep 1. Therefore, the transition is not a simple one and involves sulfate rotations and cadmium and potassium ion displacements.  相似文献   
2.
Wave-cut pluvial shoreline scarps are ideal natural experiments in hillslope evolution because the ages of these scarps are often precisely known and because they form with a range of heights, alluvial textures, and microclimates (i.e., orientation). Previous work using midpoint-slope methods on pluvial scarps in the Basin and Range concluded that scarp evolution is nonlinear and microclimatically controlled. The purpose of this study was to further examine the influence of scarp height, texture and microclimate in an attempt to calibrate a nonlinear model of scarp evolution. To do this, over 150 profiles of the Bonneville shoreline in the adjacent Snake and Tule Valleys, west-central Utah were collected and analyzed by fitting the entire scarp profile to diffusion-equation solutions, taking into account uncertainty in the initial scarp angle. In contrast to previous studies, this analysis revealed no evidence for nonlinearity or microclimatic control. To understand the reason for this discrepancy, we undertook a systematic study of the accuracy of each scarp-analysis method. The midpoint-slope-inverse method was found to yield biased results, with systematically higher diffusion ages for young, tall scarps. The slope-offset method is unbiased but has limited resolution because it requires many scarp profiles to yield a single diffusion age. A method that incorporates the full scarp profile and uncertainty in the initial scarp angle was found to be the most accurate technique. The application of the full-scarp method to the Bonneville shoreline supports the use of a linear diffusion model for scarps up to 20 m in height. Scarp orientation had no discernable effect on diffusivity values. Soil texture was found to have a weak but significant inverse relationship with diffusivity values.  相似文献   
3.
The Palaeoproterozoic units of Terre Adélie show two types of structural domains associated with HT–LP metamorphic conditions: domes and NS–N340° striking vertical shear zones. Shear zones reflect dextral transpressive motions. Domes reflect sub-vertical shortening and principal stretching subparallel to shear zones. They could partly result from longitudinal flow coeval with transpression. Deformations are comparable to those described along the eastern and western boundaries of the Archean Gawler Craton (South-East Australia), which underlines the continuity between these two areas before opening of the Austral Ocean. To cite this article: A. Pelletier et al., C. R. Geoscience 334 (2002) 505–511.  相似文献   
4.
Fitting the Linear Model of Coregionalization by Generalized Least Squares   总被引:2,自引:0,他引:2  
In geostatistical studies, the fitting of the linear model of coregionalization (LMC) to direct and cross experimental semivariograms is usually performed with a weighted least-squares (WLS) procedure based on the number of pairs of observations at each lag. So far, no study has investigated the efficiency of other least-squares procedures, such as ordinary least squares (OLS), generalized least squares (GLS), and WLS with other weighing functions, in the context of the LMC. In this article, we compare the statistical properties of the sill estimators obtained with eight least-squares procedures for fitting the LMC: OLS, four WLS, and three GLS. The WLS procedures are based on approximations of the variance of semivariogram estimates at each distance lag. The GLS procedures use a variance–covariance matrix of semivariogram estimates that is (i) estimated using the fourth-order moments with sill estimates (GLS1), (ii) calculated using the fourth-order moments with the theoretical sills (GLS2), and (iii) based on an approximation using the correlation between semivariogram estimates in the case of spatial independence of the observations (GLS3). The current algorithm for fitting the LMC by WLS while ensuring the positive semidefiniteness of sill matrix estimates is modified to include any least-squares procedure. A Monte Carlo study is performed for 16 scenarios corresponding to different combinations of the number of variables, number of spatial structures, values of ranges, and scale dependence of the correlations among variables. Simulation results show that the mean square error is accounted for mostly by the variance of the sill estimators instead of their squared bias. Overall, the estimated GLS1 and theoretical GLS2 are the most efficient, followed by the WLS procedure that is based on the number of pairs of observations and the average distance at each lag. On that basis, GLS1 can be recommended for future studies using the LMC.  相似文献   
5.
The Reduced Emissions from Deforestation and forest Degradation (REDD+) mechanism of a future post-2012 global climate-change treaty would aim to give incentive to tropical countries to reduce deforestation and thus forest-carbon emissions. It would do so by crediting tropical countries for reducing deforestation relative to a baseline scenario describing carbon emissions and removals from forest-cover change expected in the absence of REDD+. Defining a credible and accurate baseline is both critical and challenging. One approach considered promising is spatial modelling to project forest-cover change on the basis of historical trends; yet few such projections have been validated at a national scale. We develop and validate a novel GEOMOD projection of forest-cover change in Panama over 2000–2008, based on trends over 1990–2000 and 25 drivers of forest-cover change. Compared with the actual landscape of 2008, our projection is 85.2% accurate at a 100-m pixel resolution. More error is attributable to the location of projected forest (8.6%) than to its area (6.2%). Accuracy was least where forest regeneration predominated (80%), and greatest where deforestation predominated (90%). Despite the sophistication of our projection, it is slightly less accurate than if we had assumed no forest-cover change over 2000–2008. We identify factors limiting projection accuracy, including the complexity of forest-cover change, the spatial variability of forest-carbon density, and the relatively small area of change at the national scale. We conclude that, with the exception of contexts where forest-cover change is significant and straightforward and where forest-carbon density relatively uniform (e.g., agricultural frontiers), spatially projected baselines are of limited value for REDD+ – their accuracy is too limited given their relative lack of transparency. Simpler, relatively coarse scale, retrospective baselines are recommended instead.  相似文献   
6.
Taiwan is located in the axis of the Manila Trench. It results from an oblique collision between the northernmost part of the Luzon arc and the Chinese passive margin. This active collision follows the subduction of the Oligocene-Miocene oceanic crust of the South China Sea along the Manila Trench. The tectonized Chinese margin emerged in the Hengchun peninsula (South Taiwan). Gentle folds which are delineated by the Quaternary reefal limestones demonstrate Recent deformations. These folds deformed a thick detrital sequence of Miocene age (Ssuchung Chi series) which was previously strongly folded and thrust westward (axis NS-N20) upon the Renting mélange of Latest Miocene age. These main deformations, sealed by the Middle Pliocene, are the evidence for the onset of collision in this part of Taiwan at the end of the Miocene. Because of its obliquity, the collision started already in the northern part of Taiwan during the Late Miocene (6-7-8 Ma ?).The Ssuchung Chi series, a sequence of proximal turbidites, has contained, since the Middle Miocene (NN 6~13 Ma), fragments of an Oligocene to Lower Miocene oceanic crust. This ophiolitic material is very similar to the East Taiwan Ophiolite of the Coastal Range. It originated most probably from a slice of South China Sea crust obducted in Middle Miocene times (13–14 Ma) upon the Chinese margin (North of the Hengchun peninsula). This obduction occurred 7 to 8 Ma before the beginning of collision. These results make it possible to propose an evolutionary model for Taiwan from the Oligocene to the Recent, with the different phases of a collision between a volcanic arc and a passive margin.  相似文献   
7.
An overview of toxicant identification in sediments and dredged materials   总被引:1,自引:0,他引:1  
The identification of toxicants affecting aquatic benthic systems is critical to sound assessment and management of our nation's waterways. Identification of toxicants can be useful in designing effective sediment remediation plans and reasonable options for sediment disposal. Knowledge of which contaminants affect benthic systems allows managers to link pollution to specific dischargers and prevent further release of toxicant(s). In addition, identification of major causes of toxicity in sediments may guide programs such as those developing environmental sediment guidelines and registering pesticides, while knowledge of the causes of toxicity which drive ecological changes such as shifts in benthic community structure would be useful in performing ecological risk assessments. To this end, the US Environmental Protection Agency has developed tools (toxicity identification and evaluation (TIE) methods) that allow investigators to characterize and identify chemicals causing acute toxicity in sediments and dredged materials. To date, most sediment TIEs have been performed on interstitial waters. Preliminary evidence from the use of interstitial water TIEs reveals certain patterns in causes of sediment toxicity. First, among all sediments tested, there is no one predominant cause of toxicity; metals, organics, and ammonia play approximately equal roles in causing toxicity. Second, within a single sediment there are multiple causes of toxicity detected; not just one chemical class is active. Third, the role of ammonia is very prominent in these interstitial waters. Finally, if sediments are divided into marine or freshwater, TIEs perforMed on interstitial waters from freshwater sediments indicate a variety of toxicants in fairly equal proportions, while TIEs performed on interstitial waters from marine sediments have identified only ammonia and organics as toxicants, with metals playing a minor role. Preliminary evidence from whole sediment TIEs indicates that organic compounds play a major role in the toxicity of marine sediments, with almost no evidence for either metal or ammonia toxicity. However, interpretation of these results may be skewed because only a small number of interstitial water (n = 13) and whole sediment (n = 5) TIEs have been completed. These trends may change as more data are collected.  相似文献   
8.
9.
Our understanding on how ash particles in volcanic plumes react with coexisting gases and aerosols is still rudimentary, despite the importance of these reactions in influencing the chemistry and dynamics of a plume. In this study, six samples of fine ash (<100 m) from different volcanoes were measured for their specific surface area, as, porosity and water adsorption properties with the aim to provide insights into the capacity of silicate ash particles to react with gases, including water vapour. To do so, we performed high-resolution nitrogen and water vapour adsorption/desorption experiments at 77 K and 303 K, respectively. The nitrogen data indicated as values in the range 1.1–2.1 m2/g, except in one case where a as of 10 m2/g was measured. This high value is attributed to incorporation of hydrothermal phases, such as clay minerals, in the ash surface composition. The data also revealed that the ash samples are essentially non-porous, or have a porosity dominated by macropores with widths >500 Å. All the specimens had similar pore size distributions, with a small peak centered around 50 Å. These findings suggest that fine ash particles have relatively undifferentiated surface textures, irrespective of the chemical composition and eruption type. Adsorption isotherms for water vapour revealed that the capacity of the ash samples for water adsorption is systematically larger than predicted from the nitrogen adsorption as values. Enhanced reactivity of the ash surface towards water may result from (i) hydration of bulk ash constituents; (ii) hydration of surface compounds; and/or (iii) hydroxylation of the surface of the ash. The later mechanism may lead to irreversible retention of water. Based on these experiments, we predict that volcanic ash is covered by a complete monolayer of water under ambient atmospheric conditions. In addition, capillary condensation within ash pores should allow for deposition of condensed water on to ash particles before water reaches saturation in the plume. The total mass of water vapour retained by 1 g of fine ash at 0.95 relative water vapour pressure is calculated to be ~10–2 g. Some volcanic implications of this study are discussed.Editorial responsibility: J. Gilbert  相似文献   
10.
The effectiveness of fertilizers for crude oil bioremediation in sub-Antarctic intertidal sediments was tested over a one-year period in a series of ten (10) experimental enclosures. Chemical, microbial and toxicological parameters demonstrated the effectiveness of various fertilizers in a pristine environment where hydrocarbon degrading bacteria (HDB) had not been stimulated by previous accidental spills or human activities. The low temperature of seawater (3-4 degrees C) had no obvious effects on the HDB community and the bioremediation process. Over 90% of n-alkanes were degraded in the first six months and most light aromatics (2-3 rings) disappeared during the first year of observation. The toxicity of oiled residues (Microtox(R) SP) was significantly reduced in the first 6 months of the process, but it increased again in the last months of the experiment. One of the fertilizers containing fishbone compost enriched with urea, inorganic phosphorus and a lipidic surfactant reduced significantly the toxicity of oil residues in the last 3 months of the experiment. Interstitial waters collected below the oil slicks during the remediation showed no toxicity, and even stimulated Vibrio fischeri. When comparing all fertilizers to the control plots, a good correlation (r(2)=0.82) was found between the growth rate of HDB and the degradation rate of n-alkanes in the first 90 days of the experiment only indicating that fertilizers were efficient for at least 3 months but their beneficial effects were lost after 6 months.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号