首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
大气科学   3篇
地质学   4篇
海洋学   1篇
  2013年   1篇
  2009年   2篇
  2008年   1篇
  2005年   1篇
  2002年   1篇
  1998年   1篇
  1992年   1篇
排序方式: 共有8条查询结果,搜索用时 612 毫秒
1
1.
2.
3.
4.
5.
We report on quartz Optically Stimulated Luminescence (OSL) dating of the infill of 14 relict sand wedges and composite-wedge pseudomorphs at 5 different sites in Flanders, Belgium. A laboratory dose recovery test indicates that the single-aliquot regenerative-dose (SAR) procedure is suitable for our samples (measured to a given dose ratio 0.980 ± 0.005; n =139). Completeness of resetting of the wedge infill of two samples was confirmed by single-grain analyses. The suite of optical ages indicates that repeated thermal contraction cracking, degradation and infilling with wind-blown sediment appear to have been commonplace in Flanders during the Late Pleniglacial (Oxygen Isotope Stage 2; OIS2); more specifically, around the Last Glacial Maximum (LGM, ∼21 kyr ago) and the transition period between the LGM and the start of the Lateglacial (∼15 kyr ago). Optical dating at one site has revealed two significantly older wedge levels, the younger inset into the older; the younger wedge has an age of 36 ± 4 kyr (Middle Pleniglacial; OIS3), the older wedge 129 ± 11 kyr, which points to formation during the Late Saalian (OIS6). Our OSL ages of the wedges and host sediments bracket formation of the BGB (Beuningen Gravel Bed: a widespread deflation horizon in northwestern Europe) at between ∼15 and 18 kyr; this is in good agreement with previous OSL dating studies. We conclude that optical dating using quartz SAR OSL establishes an absolute chronology for these periglacial phenomena and allows secure palaeoenvironmental reconstructions to be made.  相似文献   
6.
7.
The Qinling Mountain range constitutes a critical boundary for climate and vegetation distribution in eastern central mainland China owing to its importance as a geographic demarcation line. In this article, cores from 88 Chinese pines ( Pinus tabulaeformis ) from the southern (MW site) and northern (NWT site) slopes of the Qinling Mountains were used to reconstruct seasonal temperature variations. During the calibration period, significant correlations were found between ring width and the mean temperature from prior September to current April of 0.76 at the southern slope, and between ring width and the mean May–July temperature of 0.67 at the northern slope. The subsequent temperature reconstructions span 1760–2005 for the northern site and 1837–2006 for the southern site. Prior to the mid-20th century, low September–April temperatures were, in general, followed by high May–July temperatures, probably reflecting variations in the winter and summer monsoon. However, since the mid-20th century, both records show trends of a more pronounced increase in September–April temperature on the southern slope. The results provide independent support for the interpretation that recent warming is unusual in nature, coinciding with the observed record. The results compare well with tree-ring based reconstructions from the surrounding regions, suggesting regional signals in the Qinling Mountain reconstructions.  相似文献   
8.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号