首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   1篇
大气科学   3篇
地球物理   4篇
地质学   34篇
天文学   4篇
  2021年   1篇
  2019年   1篇
  2018年   4篇
  2017年   5篇
  2016年   2篇
  2015年   2篇
  2014年   3篇
  2013年   4篇
  2012年   4篇
  2011年   3篇
  2010年   5篇
  2009年   4篇
  2008年   3篇
  2006年   1篇
  2004年   1篇
  2000年   1篇
  1998年   1篇
排序方式: 共有45条查询结果,搜索用时 281 毫秒
1.
The geologic positions and geochemical and isotope parameters of the Ordovician-early Silurian and Early-Middle Devonian continuous volcanic series of the Minusa basin and its mountainous framing are compared. Both series are composed mostly of moderately alkaline rocks with variations in SiO2 contents from 45 to 77 wt.%. The Ordovician-early Silurian series differs from the Early-Middle Devonian one in lower contents of TiO2 (< 1.7 wt.%) and Fe2O3tot and higher contents of Al2O3 in all rock varieties and in the more fractionated REE patterns of trachybasalts. The compositions of both series reflect two simultaneous mechanisms of magma evolution. The main process was fractional crystallization leading to the formation of rocks from trachybasalts to trachyrhyodacites. The accessory mechanism was the contamination of fractionated melts by crustal material, anatectic melting of crust, and mixing of deep-seated magmas with crustal melts. These processes had specifics at each stage and were controlled by the composition of the sources of parental melts. Their geochemical and isotopic parameters (high alkalinity, high contents of lithophile elements, negative anomalies of Nb, Ta, and Ti, and enrichment in radiogenic Sr) point to the interaction of mantle plumes with the lithospheric mantle that was metasomatically transformed during the preceding Vendian-early Cambrian subduction processes.  相似文献   
2.
Phase relations are studied experimentally in the harzburgite–hydrous carbonate melt system, the bulk composition of which represents primary kimberlite. Experiments were carried out at 5.5 and 7.5 GPa, 1200–1350°С, and \({{X}_{{{\text{C}}{{{\text{O}}}_{2}}}}}\) = 0.39–0.57, and lasted 60 hours. It is established that olivine–orthopyroxene–garnet–magnesite–melt assemblage is stable within the entire range of the studied parameters. With increase of temperature and \({{X}_{{{\text{C}}{{{\text{O}}}_{2}}}}}\) in the system, Ca# in the melt and the olivine fraction in the peridotite matrix significantly decrease. The composition of silicate phases in run products is close to those of high-temperature mantle peridotite. Analysis of obtained data suggest that magnesite at the base of subcontinental lithosphere could be derived by metasomatic alteration of peridotite by asthenospheric hydrous carbonate melts. The process is possible in the temperature range typical of heat flux of 40–45 mW/m2, which corresponds to the conditions of formation of the deepest peridotite xenoliths. Crystallization of magnesite during interaction with peridotite matrix can be considered as experimentally substantiated mechanism of CO2 accumulation in subcratonic lithosphere.  相似文献   
3.
van der Kruk  J.  Slob  E.C.  Fokkema  J.T. 《Geologie en Mijnbouw》1998,77(2):177-188
Characterization of the shallow subsurface (0.25 to 10 m) is of growing importance for engineering activities, solutions of environmental problems, and archaeological investigations. Ground-penetrating radar (GPR) is an appropriate technique considering the depth range of interest, the strength of electric and magnetic contrasts between different subsurface layers and buried objects, and the required resolution. GPR surveys can detect subsurface structures by recording electromagnetic reflections from discontinuities. The detectability of objects and the delineation of subsurface structures increases with increasing wave velocity and conductivity differences between the object and its surroundings or between adjacent layers. However, unwanted reflections from objects above the surface influence the images. Shielded antennas can be used to avoid strong reflections from these objects. The data thus obtained are, however, more difficult to interpret. The fundamentals of GPR and two different acquisition setups for a GPR system are discussed. Basic interpretation tools for travel-time and velocity estimation are described, and finally, case studies are presented, followed by conclusions.  相似文献   
4.
EC?11481–2303 is a peculiar, hot, high-gravity pre-white dwarf. Previous optical spectroscopy revealed that it is a sdOB star with T eff=41?790 K, log?g=5.84, and He/H = 0.014 by number. We present an on-going spectral analysis by means of non-LTE model-atmosphere techniques based on high-resolution, high-S/N optical (VLT-UVES) and ultraviolet (FUSE, IUE) observations.We are able to reproduce the optical and UV observations simultaneously with a chemically homogeneous NLTE model atmosphere with a significantly higher effective temperature and lower He abundance (T eff=55?000 K, log?g=5.8, and He/H=0.0025 by number). While C, N, and O appear less than 0.15 times solar, the iron-group abundance is strongly enhanced by at least a factor of ten.  相似文献   
5.
The history of the Vendian–Early Paleozoic formation of protoliths of continental crust in the Gorny Altai segment of the Central Asian fold belt is considered, and their composition, isotopic characteristics, and formation mechanisms are estimated. We have established two stages of crust-forming processes in Gorny Altai: Early and Late Caledonian, with the different structures of formed geoblocks and nature and compositions of crustal protoliths. At the Early Caledonian stage, fragments of oceanic lithosphere of basic composition (MORB, OIT, OIB) (TNd(DM-2st) = 0.65–1.1 Ga) formed, as well as island arcs with andesite-basaltic and andesitic protoliths with low contents of incompatible elements (TNd(DM-2st) = 0.7–0.9 Ga). At the Late Caledonian stage, the redistribution of the substance of these blocks and the external supply of material led to the formation of heterogeneous crust of turbidite basins with an oceanic basement and andesite-dacitic upper-crustal protoliths (TNd(DM-2st) varies from 0.8–0.9 Ga in the framing of the volcanic arc of Altaids to 1.4–1.6 Ga at the boundary of the Altai–Mongolian microcontinent).  相似文献   
6.
7.
Study of the mechanism of carbonation and wehrlitization of harzburgite upon metasomatism by carbonatitic melts of various genesis was carried out. Experiments with durations of 60–150 h were performed at 6.3 GPa and 1200°C. The data showed that carbonatite with MgO/CaO > 0.3 percolating into the peridotitic lithosphere may provide crystallization of magnesite in it. The influence of all studied carbonatites results in wehrlitization of peridotite. The compositions of melts formed by interaction with harzburgite (~2 wt % SiO2, Ca# = 36–47) practically do not depend on the composition of the initial carbonatite. Based on the data obtained, we conclude that the formation of magnesite-bearing and magnesite-free metasomatized peridotites may have a significant influence on the CO2 regime in the further generation of kimberlitic magmas of groups I and II.  相似文献   
8.
The accurate estimate of the surface longwave fluxes contribution is important for the calculation of the surface radiation budget, which in turn controls all the components of the surface energy budget, such as evaporation and the sensible heat fluxes. This study evaluates the performance of the various downward longwave radiation parameterizations for clear and all-sky days applied to the Sertãozinho region in São Paulo, Brazil. Equations have been adjusted to the observations of longwave radiation. The adjusted equations were evaluated for every hour throughout the day and the results showed good fits for most of the day, except near dawn and sunset, followed by nighttime. The seasonal variation was studied by comparing the dry period against the rainy period in the dataset. The least square linear regressions resulted in coefficients equal to the coefficients found for the complete period, both in the dry period and in the rainy period. It is expected that the best fit equation to the observed data for this site be used to produce estimates in other regions of the State of São Paulo, where such information is not available.  相似文献   
9.
The hydrogen-deficiency in extremely hot post-AGB stars of spectral class PG1159 is probably caused by a (very) late helium-shell flash or a AGB final thermal pulse that consumes the hydrogen envelope, exposing the usually-hidden intershell region. Thus, the photospheric element abundances of these stars allow us to draw conclusions about details of nuclear burning and mixing processes in the precursor AGB stars. We compare predicted element abundances to those determined by quantitative spectral analyses performed with advanced non-LTE model atmospheres. A good qualitative and quantitative agreement is found for many species (He, C, N, O, Ne, F, Si, Ar) but discrepancies for others (P, S, Fe) point at shortcomings in stellar evolution models for AGB stars. Almost all of the chemical trace elements in these hot stars can only be identified in the UV spectral range. The Far Ultraviolet Spectroscopic Explorer and the Hubble Space Telescope played a crucial role for this research.  相似文献   
10.
Hydrous K-rich kimberlite-like systems are studied experimentally at 5.5–7.5 GPa and 1200–1450?°C in terms of phase relations and conditions for formation and stability of phlogopite. The starting samples are phlogopite–carbonatite–phlogopite sandwiches and harzburgite–carbonatite mixtures consisting of Ol?+?Grt?+?Cpx?+?L (±Opx), according to the previous experimental results obtained at the same PT parameters but in water-free systems. Carbonatite is represented by a K- and Ca-rich composition that may form at the top of a slab. In the presence of carbonatitic melt, phlogopite can partly melt in a peritectic reaction at 5.5 GPa and 1200–1350?°C, as well as at 6.3–7.0 GPa and 1200?°C: 2Phl?+?CaCO3 (L)?Cpx?+?Ol?+?Grt?+?K2CO3 (L)?+?2H2O (L). Synthesis of phlogopite at 5.5 GPa and 1200–1350?°C, with an initial mixture of H2O-bearing harzburgite and carbonatite, demonstrates experimentally that equilibrium in this reaction can be shifted from right to left. Therefore, phlogopite can equilibrate with ultrapotassic carbonate–silicate melts in a?≥?150?°C region between 1200 and 1350?°C at 5.5 GPa. On the other hand, it can exist but cannot nucleate spontaneously and crystallize in the presence of such melts in quite a large pressure range in experiments at 6.3–7.0 GPa and 1200?°C. Thus, phlogopite can result from metasomatism of peridotite at the base of continental lithospheric mantle (CLM) by ultrapotassic carbonatite agents at depths shallower than 180–195 km, which creates a mechanism of water retaining in CLM. Kimberlite formation can begin at 5.5 GPa and 1350?°C in a phlogopite-bearing peridotite source generating a hydrous carbonate–silicate melt with 10–15 wt% SiO2, Ca# from 45 to 60, and high K enrichment. Upon further heating to 1450?°C due to the effect of a mantle plume at the CLM base, phlogopite disappears and a kimberlite-like melt forms with SiO2 to 20 wt% and Ca#?=?35–40.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号