首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
地球物理   2篇
地质学   2篇
自然地理   3篇
  2005年   2篇
  2003年   2篇
  2000年   1篇
  1998年   1篇
  1992年   1篇
排序方式: 共有7条查询结果,搜索用时 765 毫秒
1
1.
We compare two geophysical survey measurements of the same type made at different times in order to characterize the change in the geological medium during the elapsed time. The aim of this study is to develop a strategy using a full non-linear inversion algorithm as the interpretation tool. In this way, not only the location and the form of the changes are recovered, but also the changes in the material parameters of the geological medium can be estimated. In order to solve this fully non-linear problem, the so-called ‘multiplicative regularized contrast source inversion’ (MR-CSI) method is employed. The unique property of this iterative method is that it does not solve the forward problem at each iterative step. This makes it possible to use the non-linear inversion algorithm for large-scale computation problems. The numerical results show that by taking into account the non-linear nature of the problem, interpretation of the time-lapse data can be significantly improved, compared with that obtained using linear inversion.  相似文献   
2.
3.
van der Kruk  J.  Slob  E.C.  Fokkema  J.T. 《Geologie en Mijnbouw》1998,77(2):177-188
Characterization of the shallow subsurface (0.25 to 10 m) is of growing importance for engineering activities, solutions of environmental problems, and archaeological investigations. Ground-penetrating radar (GPR) is an appropriate technique considering the depth range of interest, the strength of electric and magnetic contrasts between different subsurface layers and buried objects, and the required resolution. GPR surveys can detect subsurface structures by recording electromagnetic reflections from discontinuities. The detectability of objects and the delineation of subsurface structures increases with increasing wave velocity and conductivity differences between the object and its surroundings or between adjacent layers. However, unwanted reflections from objects above the surface influence the images. Shielded antennas can be used to avoid strong reflections from these objects. The data thus obtained are, however, more difficult to interpret. The fundamentals of GPR and two different acquisition setups for a GPR system are discussed. Basic interpretation tools for travel-time and velocity estimation are described, and finally, case studies are presented, followed by conclusions.  相似文献   
4.
5.
6.
Apparent resistivity is a useful concept for initial quickscan interpretation and quality checks in the field, because it represents the resistivity properties of the subsurface better than the raw data. For frequency‐domain soundings several apparent‐resistivity definitions exist. One definition uses an asymptote for the field of a magnetic dipole in a homogeneous half‐space and is useful only for low induction numbers. Another definition uses only the amplitude information of the total magnetic field, although this results in a non‐unique apparent resistivity. To overcome this non‐uniqueness, a complex derivation using two different source–receiver configurations and several magnetic field values for different frequencies or different offsets is derived in another definition. Using the latter theory, in practice, this means that a wide range of measurements have to be carried out, while commercial systems are not able to measure this wide range. In this paper, an apparent‐resistivity concept is applied beyond the low‐induction zone, for which the use of different source–receiver configurations is not needed. This apparent‐resistivity concept was formerly used to interpret the electromagnetic transients that are associated with the turn‐off of the transmitter current. The concept uses both amplitude and phase information and can be applied for a wide range of frequencies and offsets, resulting in a unique apparent resistivity for each individual (offset, frequency) combination. It is based on the projection of the electromagnetic field data on to the curve of the field of a magnetic dipole on a homogeneous half‐space and implemented using a non‐linear optimization scheme. This results in a fast and efficient estimation of apparent resistivity versus frequency or offset for electromagnetic sounding, and also gives a new perspective on electromagnetic profiling. Numerical results and two case studies are presented. In each case study the results are found to be comparable with those from other existing exploration systems, such as EM31 and EM34. They are obtained with a slight increase of effort in the field but contain more information, especially about the vertical resistivity distribution of the subsurface.  相似文献   
7.
Stress is the most important parameter to understand basin dynamics and the evolution of hydrocarbon systems. The state of stress can be quantified by numerical geo-mechanical modelling techniques. These techniques require static elastic parameters of the rocks as input, while tectonic and gravitational forces are given as explicit boundary conditions to compute the local state of stress at different scales. We developed a technique to determine the density and elastic constants at seismic frequencies using full Zoeppritz inversion on angle-dependent seismic reflection data. The dynamic elastic parameters as obtained from seismic data differ from their static equivalents, which are necessary to determine the static state of stress. The dynamic elastic parameters are related to their static equivalents through experimentally obtained relations. In these rock-physics experiments, the static and dynamic elastic parameters are measured simultaneously during different external loading conditions. The experiments used here are all carried out in a tri-axial pressure machine under equal axial stresses. Then pre-stack seismic data analysis in combination with the relation between the static and dynamic elastic parameters, from the rock-physics experiments, provides the input parameters for geo-mechanical modelling.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号