首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   182篇
  免费   13篇
  国内免费   1篇
测绘学   3篇
大气科学   34篇
地球物理   88篇
地质学   48篇
海洋学   8篇
天文学   5篇
综合类   1篇
自然地理   9篇
  2024年   1篇
  2022年   2篇
  2021年   3篇
  2020年   9篇
  2019年   6篇
  2018年   11篇
  2017年   4篇
  2016年   13篇
  2015年   9篇
  2014年   10篇
  2013年   11篇
  2012年   13篇
  2011年   11篇
  2010年   7篇
  2009年   16篇
  2008年   10篇
  2007年   7篇
  2006年   6篇
  2005年   4篇
  2004年   9篇
  2003年   7篇
  2002年   2篇
  2001年   6篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1996年   4篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
排序方式: 共有196条查询结果,搜索用时 16 毫秒
1.
When the observation of small headwater catchments in the pre-Alpine Alptal valley (central Switzerland) started in the late 1960s, the researchers were mainly interested in questions related to floods and forest management. Investigations of geomorphological processes in the steep torrent channels followed in the 1980s, along with detailed observations of biogeochemical and ecohydrological processes in individual forest stands. More recently, research in the Alptal has addressed the impacts of climate change on water supply and runoff generation. In this article, we describe, for the first time, the evolution of catchment research at Alptal, and present new analyses of long-term trends and short-term hydrologic behaviour. Hydrometeorological time series from the past 50 years show substantial interannual variability, but only minimal long-term trends, except for the ~2°C increase in mean annual air temperature over the 50-year period, and a corresponding shift towards earlier snowmelt. Similar to previous studies in larger Alpine catchments, the decadal variations in mean annual runoff in Alptal's small research catchments reflect the long-term variability in annual precipitation. In the Alptal valley, the most evident hydrological trends were observed in late spring and are related to the substantial change in the duration of the snow cover. Streamflow and water quality are highly variable within and between hydrological events, suggesting rapid shifts in flow pathways and mixing, as well as changing connectivity of runoff-generating areas. This overview illustrates how catchment research in the Alptal has evolved in response to changing societal concerns and emerging scientific questions.  相似文献   
2.
3.
This paper deals with the derivation of the convective mixing height and the characteristic convective velocity w * from profiles of w measured by sodar. The parameters were obtained by fitting an analytical profile to the observed data. Results were compared with values obtained by the meteorological preprocessor of a dispersion model and from noon radiosoundings. In addition, a Monte Carlo method was applied to study the influence of measurement errors. It turned out that it is inherently difficult to determine the depth of deep mixed layers from sodar measurements with a limited range, although the determination of w * should be possible. However, a significant underestimation of w , and thus w *, was found, which is probably due to disproportional sampling of updrafts and downdrafts.  相似文献   
4.
A method was developed for the determination of organic halogens in water samples with the aim of minimizing matrix effects and simplifying the sample preparation technique commonly used. The method is based on the adsorption of organic halogens in modified hydrophilic divinylbenzene polymer columns and their elution with methanol. The adsorbent used enables rapid adsorption and desorption due to comparatively high operating flow rates and minimized solvent amounts. Furthermore, no additional reconcentration steps are needed. The methanol extract obtained is combusted with a standard EOX (extractable organic halogen) analyzer and the concentration of organically bound halogens is determined by microcoulometric analysis. The matrix effects are considerably reduced compared to the standard procedure (EN 1485) commonly used. A detection limit of 13 μg/L was established.  相似文献   
5.
Three Al-Cr exchange isotherms at 1,250°, 1,050°, and 796° between Mg(Al, Cr)2O4 spinel and (Al, Cr)2O3 corundum crystalline solutions have been studied experimentally at 25 kbar pressure. Starting from gels of suitable bulk compositions, close approach to equilibrium has been demonstrated in each case by time studies. Using the equation of state for (Al, Cr)2O3 crystalline solution (Chatterjee et al. 1982a) and assuming that the Mg(Al, Cr)2O4 can be treated in terms of the asymmetric Margules relation, the exchange isotherms were solved for Δ G *, and . The best constrained data set from the 1,250° C isotherm clearly shows that the latter two quantities do not overlap within three standard deviations, justifying the choice of asymmetric Margules relation for describing the excess mixing properties of Mg(Al, Cr)2O4 spinels. Based on these experiments, the following polybaric-polythermal equation of state can be formulated: , P expressed in bars, T in K, G m ex and W G,i Sp in joules/mol. Temperature-dependence of G m ex is best constrained in the range 796–1,250° C; extrapolation beyond that range would have to be done with caution. Such extrapolation to lower temperature shows tentatively that at 1 bar pressure the critical temperature, T c, of the spinel solvus is 427° C, with dTc/dP≈1.3 K/kbar. The critical composition, X c, is 0.42 , and changes barely with pressure. Substantial error in calculated phase diagrams will result if the significant positive deviation from ideality is ignored for Al-Cr mixing in such spinels.  相似文献   
6.
7.
Reservoirs have to be released when repairing of the dams is necessary. In 1995, two reservoirs in Baden-Württemberg (Germany) of similar age and volume (Lake Herrenbach near Göppingen, 1.0 Mio. m3 and Lake Breitenau near Heilbronn, 2.3 Mio. m3) were emptied. This allowed the singular possibility to investigate the effects of drainage and refilling on the limnochemistry and the phytoplankton biocoenosis of such artificial lakes.Before the drainage of the reservoirs, both lakes showed phosphorus release from the sediment during summer stagnation. Phosphorus values of Lake Herrenbach were regularly higher than those of Lake Breitenau (Lake Herrenbach 88 μg/l, Lake Breitenau 33 μg/l). During release, both lakes indicated higher phosphorus and chlorophyll concentrations as well as rising biomasses. Remarkable differences were observed during refilling of the reservoirs: while Lake Herrenbach showed higher transparency and lower phosphorus concentrations, Lake Breitenau progressed towards eutrophication (total phosphorus during summer 1996: Lake Herrenbach 30 μg/l, Lake Breitenau 55 μg/l). One reason for the reaction of Lake Breitenau was the reduced ground drainage during the refilling, which caused an accumulation of nutrients in the hypolimnion. Another reason was the mineralisation of vegetation which covered great parts of the dry lake sediment. The limnological change of Lake Herrenbach was not as clear but could be caused by the restauration of the pre-reservoir which was drainaged and dredged before the emptying of the main reservoir started as well as many other facts which differed Lake Herrenbach from Lake Breitenau.  相似文献   
8.
ABSTRACT

In many places, magnitudes and frequencies of floods are expected to increase due to climate change. To understand these changes better, trend analyses of historical data are helpful. However, traditional trend analyses do not address issues related to shifts in the relative contributions of rainfall versus snowmelt floods, or in the frequency of a particular flood type. We present a novel approach for quantifying such trends in time series of floods using a fuzzy decision tree for event classification and applied it to maximal annual and seasonal floods in 27 alpine catchments for the period 1980–2014. Trends in flood types were studied with Sen’s slope and double mass curves. Our results reveal a decreasing number of rain-on-snow and an increasing number of short rainfall events in all catchments, with flash floods increasing in smaller catchments. Overall, the results demonstrate the value of incorporating a fuzzy flood-type classification into flood trend analyses.  相似文献   
9.
Little Ice Age (LIA) austral summer temperature anomalies were derived from palaeoequilibrium line altitudes at 22 cirque glacier sites across the Southern Alps of New Zealand. Modern analog seasons with temperature anomalies akin to the LIA reconstructions were selected, and then applied in a sampling of high-resolution gridded New Zealand climate data and global reanalysis data to generate LIA climate composites at local, regional and hemispheric scales. The composite anomaly patterns assist in improving our understanding of atmospheric circulation contributions to the LIA climate state, allow an interrogation of synoptic type frequency changes for the LIA relative to present, and provide a hemispheric context of the past conditions in New Zealand. An LIA summer temperature anomaly of ?0.56 °C (±0.29 °C) for the Southern Alps based on palaeo-equilibrium lines compares well with local tree-ring reconstructions of austral summer temperature. Reconstructed geopotential height at 1,000 hPa (z1000) suggests enhanced southwesterly flow across New Zealand occurred during the LIA to generate the terrestrial temperature anomalies. The mean atmospheric circulation pattern for summer resulted from a crucial reduction of the ‘HSE’-blocking synoptic type (highs over and to the west of NZ; largely settled conditions) and increases in both the ‘T’- and ‘SW’-trough synoptic types (lows passing over NZ; enhanced southerly and southwesterly flow) relative to normal. Associated land-based temperature and precipitation anomalies suggest both colder- and wetter-than-normal conditions were a pervasive component of the base climate state across New Zealand during the LIA, as were colder-than-normal Tasman Sea surface temperatures. Proxy temperature and circulation evidence were used to corroborate the spatially heterogeneous Southern Hemisphere composite z1000 and sea surface temperature patterns generated in this study. A comparison of the composites to climate mode archetypes suggests LIA summer climate and atmospheric circulation over New Zealand was driven by increased frequency of weak El Niño-Modoki in the tropical Pacific and negative Southern Annular Mode activity.  相似文献   
10.
Uncertainty in discharge data must be critically assessed before data can be used in, e.g. water resources estimation or hydrological modelling. In the alluvial Choluteca River in Honduras, the river‐bed characteristics change over time as fill, scour and other processes occur in the channel, leading to a non‐stationary stage‐discharge relationship and difficulties in deriving consistent rating curves. Few studies have investigated the uncertainties related to non‐stationarity in the stage‐discharge relationship. We calculated discharge and the associated uncertainty with a weighted fuzzy regression of rating curves applied within a moving time window, based on estimated uncertainties in the observed rating data. An 18‐year‐long dataset with unusually frequent ratings (1268 in total) was the basis of this study. A large temporal variability in the stage‐discharge relationship was found especially for low flows. The time‐variable rating curve resulted in discharge estimate differences of ? 60 to + 90% for low flows and ± 20% for medium to high flows when compared to a constant rating curve. The final estimated uncertainty in discharge was substantial and the uncertainty limits varied between ? 43 to + 73% of the best discharge estimate. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号