首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
大气科学   2篇
地球物理   5篇
地质学   9篇
海洋学   1篇
天文学   1篇
自然地理   1篇
  2020年   1篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  1996年   3篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
排序方式: 共有19条查询结果,搜索用时 312 毫秒
1.
Mussels, Mytilus edulis L., were exposed to elevated concentrations of copper or cadmium in the laboratory, then placed in cages in the sea (salinity 7‰). One year later maximum lengths of the mussels were measured and shells screened for deformities. Growth was 0·6 cm year?1 in the control cages and retarded in cages of exposed mussels. A total of 63% of cadmium-exposed and 46% of copper-exposed mussels had shell deformities. In the control cages 26% were deformed while in a natural population only 3% were deformed. The proportion of deformities to growth was inversely related. Low concentrations showed their injuriousness in this long-term test, probably due to the closing of the valves during exposure to high concentrations.  相似文献   
2.
Geochemical studies of the trace metal concentrations in suspended particulate matter (SPM) and sediment trap material from a permanently anoxic fjord, Framvaren, South Norway in 1989 and 1993 indicate that extremely high concentrations of zinc (max = 183920 mg/kg), copper (max = 4130 mg/kg), lead (max = 2752 mg/kg), and cadmium (max= 8.1 mg/kg) sometimes (1993) occur in the SPM collected in the anoxic water layer. The highest concentrations of Zn occur just below the redoxcline at 22 m water depth (in 1993), and copper, lead and cadmium have maximum concentrations between 30 and 80 m depth, where the amount of total SPM is at a minimum (about 0.3 mg/L). On a mass per volume (g/L) basis, the maximum concentrations of Cd, Cu and Fe occur at the interface (21m) and those of Zn occur just below the redoxcline (22 m depth). The SPM and sediment trap data suggest that the metals are precipitated as sulfide minerals in the anoxic water. The presence of particulate sulfides was confirmed by SEM studies that show the occurrence of discrete metal (Cu, Fe, Pb, and Zn) sulfide particles in size from 10–20 m as well as framboidal pyrites (1–5 m in size). Higher levels of metal sulfides at intermediate depths rather than in the deep water of Framvaren (> 100 m), may be due to input of trace metals by water exchange over the sill in the upper part of the water column. In the deep water, less metal sulfide precipitation takes place due to depletion of trace metals, and the dilution of particulate metal concentrations by organic matter and by the chemogenic formation of calcite.  相似文献   
3.
The mining environment, medical geology and urban geochemistry form a group of related scientific disciplines that have developed strongly during recent years in the Nordic countries. Modern legislation controls the environmental issues. Close co-operation of researchers and legislators has improved the quality and safety of life in the societies of the Nordic countries. In mining environmental studies, methods that are suitable in Arctic conditions have been developed; in medical geology, the input from the Nordic countries has made it an appreciated scientific discipline throughout the world, and in the case of the urban environment, methods developed by our geochemists have especially improved the health conditions, particularly of children.  相似文献   
4.
Precipitation and evaporation budgets over the Baltic Sea were studied in a concerted project called PEP in BALTEX (Pilot study of Evaporation and Precipitation in the Baltic Sea), combining extensive field measurements and modelling efforts. Eddy-correlation-measurements of turbulent heat flux were made on a semi-continuous basis for a 12 month period at four well-exposed coastal sites in the Baltic Proper (the main basin of the Baltic Sea). Precipitation was measured at land-based sites with standard gauges and on four merchant ships travelling between Germany and Finland with the aid of specially designed ship rain gauges (SRGs). The evaporation and precipitation regime of the Baltic Sea was modelled for a 12 month period by applying a wide range of numerical models: the operational atmospheric High Resolution Limited Area Model (HIRLAM, Swedish and Finnish versions), the German atmospheric REgional-scale MOdel, REMO, the operational German Europe Model (only precipitation), the oceanographic model PROBE-Baltic, and two models that use interpolation of ground-based data, the Swedish MESAN model of SMHI and a German model of IFM-GEOMAR Kiel. Modelled precipitation was compared with SRG measurements on board the ships. A reasonable correlation was obtained, but the regional-scale models and MESAN gave some 20% higher precipitation over the sea than is measured. Bulk parameterisation schemes for evaporation were evaluated against measurements. A constant value of CHN and CEN with wind speed, underestimated large fluxes of both sensible and latent heat flux. The limited area models do not resolve the influence of the height of the marine boundary layer in coastal zones and the entrainment (on the surface fluxes), which may explain the observed low correlations between modelled and measured latent heat fluxes. Estimates of evaporation, E, and precipitation, P, for the entire Baltic Proper were made with several models for a 12 month period. While the annual variation was well represented by all predictions, there are still important differences in the annual means. Evaporation ranges from 509 to 625 mm year-1 and precipitation between 624 and 805 mm year-1 for this particular 12 month period. Taking the results of model verification from the present study into account, the best estimate of P-E is about 100 ± 50 mm for this particular 12 month period. But the annual mean of P-E varies considerably from year to year. This is reflected in simulations with the PROBE-Baltic model for an 18 year period, which gave 95 mm year-1 for the 12 month period studied here and 32 mm year-1 as an average for 18 years.  相似文献   
5.
Reclamation of peat bogs for agriculture changes the physical and chemical characteristics of the peat matrix, for example, drainage and tillage accelerate decomposition, altering peat porosity, pore size distribution, and hydraulic properties. This study investigated changes in near-saturated hydraulic conductivity over time after drainage of peat soil for agricultural use by conducting tension infiltrometer measurements in a mire that has been gradually drained and reclaimed for agriculture during the past 80 years (with fields drained 2, 12, 40, and 80 years before the measurements). At pore water pressure closest to saturation (pressure head −1 cm), hydraulic conductivity in the newest field was approximately nine times larger than that in the oldest field, and a decreasing trend with field age was observed. A similar (but weaker) trend was observed with −3 cm pressure head (approximately four times larger in the newest field in comparison to the oldest), but at −6 cm head, there were no significant differences. These results indicate that peat degradation reduces the amount of millimetre-sized pores in particular. They also indicate that changes in peat macroporosity continue for several decades before a new steady state is reached.  相似文献   
6.
7.
The lithostratigraphy of pre‐Late Weichselian sediments and OSL‐dating results from four localities in the Suupohja area of western Finland, adjacent to the centre of the former Scandinavian glaciations, are presented. The studied sections expose glacifluvial, quiet‐water, littoral and aeolian deposits overlain by Middle and/or Late Weichselian tills. Litho‐ and biostratigraphical results together with seven OSL age determinations on buried glacifluvial sediment at Rävåsen (94±15 ka) and on till‐covered littoral and aeolian sediments at Risåsen, Rävåsen, Jätinmäki and Kiviharju (79±10 to 54±8 ka), accompanied by previous datings and interpretations, suggest that the glacifluvial sediments at Risåsen were deposited at the end of the Saalian Stage (MIS 6) and those at Risåsen were deposited possibly in the Early Weichselian Substage (MIS 5d?). Palaeosol horizons and ice‐wedge casts together with the dated littoral and aeolian sediments between the Harrinkangas Formation (Saalian) and the overlying till(s) indicate that western Finland was ice‐free during most of the Weichselian time. Littoral deposits, dated to the Middle Weichselian (MIS 4–3), occur at altitudes of 50–90 m a.s.l., which indicates significant glacio‐isostatic depression. The depression resulted from expansion of the ice sheet in the west of Finland at that time.  相似文献   
8.
Late stages of the Svecofennian orogeny in SW Finland were related to a tranpressional stress field and dextral movements along crustal scale shear zones under decreasing temperature and pressure conditions. In the Kemiö area, a minimum estimate for the time span of movements along one of these shear zones is obtained from the ages of 1840 to 1830 Myr-old microcline granite sheets, related to early ductile deformation, and by dating structurally late rare-mineral granite pegmatites, related to brittle deformation. One pegmatite was emplaced when the rheological conditions in the gabbro changed from ductile to semi-ductile and brittle. It has U-Pb ferrotapiolite ages ranging between 1807.0 ± 2.9 Myr (2 ) and 1803.1 + 2.9/ -2.0 Myr (2 ). Another pegmatite emplaced under brittle conditions has an U-Pb ferrotapiolite age of 1802.9 ± 1.3 Myr (2 ). These pegmatites were emplaced preferentially in gabbroic rocks, that showed brittle to semi-ductile deformation at a time when their more felsic host-rocks still showed ductile deformation. The age range bracketed by the microcline granite sheets and the structurally late pegmatites indicates that ductile deformation related to the transpressional Late Svecofennian tectonic regime in southwestern Finland, persisted for at least 30–40 Myr.  相似文献   
9.
The distribution of As in a variety of sample materials was studied at different scales, from continental to local, combining published data sets with the aim of delineating the impact and relative importance of geogenic vs. anthropogenic As sources. Geochemical mapping of As with a variety of sample materials demonstrates that variation is high at all scales (local to continental) – from sample densities of 400 sites per km2 to 1 site per 5000 km2. Different processes govern the As distribution at different scales. A high sample density is needed to reliably detect mineralisation or contamination in soil samples. In both cases the impact on the much larger geochemical background variation is limited to a local scale. Distribution patterns in geochemical maps on the sub-continental to continental scale are dominated by natural variation. Given that the geochemical background is characterised by a high variation at all scales, it appears impossible to establish a reliable single value for “good soil quality” or a “natural background concentration” for As for any sizeable area, e.g., for Europe. For such a differentiation, geochemical maps at a variety of scales are needed.  相似文献   
10.
Antimony in the environment: Lessons from geochemical mapping   总被引:2,自引:0,他引:2  
The distribution of Sb in a variety of sample materials, including soils, plants and surface water, was studied at different scales, from continental to local, combining published data sets with the aim of delineating the impact and relative importance of geogenic vs. anthropogenic Sb sources. Geochemical mapping demonstrates that variation is high at all scales – from the detailed scale with sample densities of many sites per km2 to the continental-scale with densities of 1 site per 5000 km2. Different processes govern the Sb distribution at different scales. A high sample density of several samples per km2 is needed to reliably detect mineralisation or contamination in soil samples. Median concentrations are so low for Sb in most sample materials (below 1 mg/kg in rocks and soils, below 0.1 mg/kg in plants, below 0.1 μg/L in surface water) that contamination is easier to detect than for many other elements. Distribution patterns on the sub-continental to continental-scale are, however, still dominated by natural variation. Given that the geochemical background is characterised by a high variation at all scales, it appears impossible to establish a reliable single value for “good soil quality” or a “natural background concentration” for Sb for any sizeable area, e.g., for Europe. For such a differentiation, geochemical maps at a variety of scales are needed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号