首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   0篇
  国内免费   6篇
测绘学   2篇
大气科学   6篇
地球物理   8篇
地质学   21篇
海洋学   15篇
天文学   3篇
综合类   3篇
自然地理   4篇
  2019年   3篇
  2018年   2篇
  2017年   1篇
  2015年   3篇
  2014年   1篇
  2013年   4篇
  2012年   2篇
  2011年   3篇
  2010年   3篇
  2009年   1篇
  2008年   4篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2004年   5篇
  2003年   1篇
  2002年   1篇
  2001年   4篇
  2000年   4篇
  1999年   1篇
  1998年   2篇
  1997年   3篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1990年   2篇
  1988年   1篇
排序方式: 共有62条查询结果,搜索用时 218 毫秒
1.
The topographic effect of the Izu Ridge on the horizontal distribution of the North Pacific Intermediate Water (NPIW) south of Japan has been studied using observational data obtained by the Seisui-Maru of Mie University (Mie Univ. data) and those compiled by Japan Oceanographic Data Center (JODC data). Both data sets show that water of salinity less than 34.1 psu on potential density () surface of 26.8 is confined to the eastern side of the Izu Ridge, while water of salinity less than 34.2 psu is confined to the southern area over the Izu Ridge at a depth greater than 2000 m and to the southeastern area in the Shikoku Basin. It is also shown by T-S analysis of Mie Univ. data over the Izu Ridge that water of salinity less than 34.2 psu dominates south of 30°N, where the depth of the Izu Ridge is deeper than 2000 m and NPIW can intrude westward over the Izu Ridge. JODC data reveal that relatively large standard deviations of the salinity on surface of 26.7, 26.8 and 26.9 are detected along the mean current path of the Kuroshio and the Kuroshio Extension. Almost all of the standard deviations are less than 0.05 psu in other area with the NPIW, which shows that the time variation in the salinity can be neglected. This observational evidence shows that the topographic effect of the Izu Ridge on the horizontal distribution of the NPIW, which is formed east of 145°E by the mixing of the Kuroshio water and the Oyashio water, is prominent north of 30°N with a depth shallower than 2000 m.  相似文献   
2.
The enrichment of boron relative to similarly incompatible elements,such as Be, in arc volcanic rocks has been used as a proxy forthe involvement of slab flux in petrogenesis. New ion microprobeanalyses of single glass shards in tephra layers recovered bythe Ocean Drilling Program (ODP) in the Izu and NE Japan forearcbasins now allow the temporal variation in slab flux to be chartedsince 7 and 5 Ma, respectively. B/Be ratios are typically <70in NE Japan and <130 in Izu, with no single grain exceeding200. Although moderate to high for modern arcs, these valuesare much less than those recorded in the Marianas and Tongaat 3–4 Ma, shortly after the start of rifting of theirback-arc basins. This observation suggests that the peak B/Bevalues seen in Tonga and the Marianas are related to the tectonicsof slab roll-back and basin opening, rather than changes inthe dynamics of the Pacific Plate. There is no temporal trendto enrichment in the high field strength elements (HFSE) orrare earth elements (REE) in either Izu or NE Japan since 7Ma, although the two elemental groups do show clear positivecorrelation. A lack of correlation between REE, HFSE and B/Besuggests that slab flux is not the only control on melting inthese arcs.  相似文献   
3.
4.
5.
6.
Tsunamis associated with the 2011 off the Pacific Coast of Tohoku Earthquake seriously disrupted the shallow marine ecosystem along a 2000 km stretch of the Pacific coast of Japan. The effects of the 2011 tsunamis on the soft-bottom benthic community have been relatively well studied in the intertidal zone, whereas tsunami effects on the subtidal benthos remain poorly understood. Here, we investigated populations of the world’s largest spoon worm Ikeda taenioides (Annelida: Echiura: Ikedidae) in subtidal zone of Funakoshi Bay, Tohoku District, northeastern Japan. Subtidal scuba-diving surveys at two sites in the bay showed extremely long proboscises frequently extending from small holes in the sandy seafloor shortly before and soon after the tsunami disturbances. Based on morphological and molecular identification, the proboscises were revealed to be parts of I. taenioides. On 30 November 2011, 265 days after the tsunami event, many large-sized individuals with >1 m long proboscises were observed; these individuals were probably not derived from post-tsunami larval recruitment but more likely survived the tsunami disturbances. This is surprising because other sympatric megabenthos (e.g. spatangoid echinoids and venerid bivalves) and seagrass beds were almost completely destroyed (although they later recovered) by the tsunamis in this bay. The burrows of I. taenioides are known to be very deep (70–90 cm), which may have sheltered them from the impacts of the tsunamis. Our observations suggest that the effects of the 2011 tsunamis on benthos in soft sediments may differ depending on their burrowing depth.  相似文献   
7.
Direct current measurements of the branch current of the Kuroshio intruding into Sagani Bay were carried out during 1989–1990 in order to clarify the frequency characteristics of the eddies in the lee of Izu-Oshima Island, which are well recognized as cold water mass produced by upwelling. Satellite and ADCP (Acoustic Doppler Current Profiler) data indicated that current velocity in the eddy fluctuates with periods of 2–4 days and 6–8 days.When the Kuroshio branch current intruding into Sagami Bay from the western channel is weak and its velocity at the depth of 400 m is approximately 10 cm s–1, the 6–8 day period fluctuation is dominant. On the other hand, when the branch current strongly intrudes from the western channel with a velocity of approximately 20 cm s–1, the 2–4 day period fluctuation dominates. The relationship between the periods and velocities agrees well with theory based on laboratory experiments for a flow of a homogeneous fluid past a circular obstacle. These periods correspond to the time scale of appearance of the eddy caused by the intrusion of the Kuroshio branch current into Sagami Bay and Izu-Oshima Island.  相似文献   
8.
Field observation was conducted to monitor phosphate concentrations in groundwater and seawater mixing at two sandy beaches in Futtsu and Miura in Tokyo Bay, Japan. Dissolved phosphate concentrations were measured along transects from fresh groundwater aquifer to seawater adjacent the beaches. The concentrations were often high (up to 46 µM) in fresh groundwater samples (Cl < 0.2). Coastal seawater, on the other hand, exhibited low phosphate concentrations (1.5 µM or less). Along the transects, phosphate generally displayed non-conservative behavior during mixing of fresh and saline waters in the aquifer; concentrations as high as 100 µM were found around the upper limit of seawater intrusion (Cl = 2). Laboratory experiments were executed to identify the processes that control the phosphate behavior in the mixing processes. The results revealed that adsorption-desorption processes by the aquifer sand particles could significantly control the phosphate concentrations in the groundwater. Furthermore, the adsorption and/or desorption was found to be a function of salinity; the equilibrium concentration of dissolved phosphate in slurry of sand and water was the highest in freshwater and decreased considerably in saline water. The extreme concentration of phosphate may be caused by release from sand particles coinciding with the rapid change in salinity with tide.  相似文献   
9.
Features of El Niño events and their biological impacts in the western North Pacific are reviewed, focusing on interactions between ENSO and the East Asian monsoon. Impacts of El Niño on the climate in the Far East become evident as ‘cool summers and warm winters’. Effects of climate regime shift on ENSO activities, western boundary currents and upper-ocean stratification, as well as their biological consequences are summarized. These have been:
1. In the western equatorial Pacific, an eastward extension of the warm pool associated with El Niño events induces an eastward shift of main fishing grounds of skip jack and big eye tunas.
2. The surface salinity front in the North Equatorial Current region retreats southward, associated with El Niño events. This leads to a southward shift of the spawning ground of Japanese eel, which is responsible for a reduction in the transport of the larval eels to the Kuroshio and Japanese coastal region, causing poor recruitment.
3. Intensification of winter cooling and vertical mixing associated with La Niña (El Niño) events in the northern subtropical region of the western (central) North Pacific reduces surface chlorophyll concentration levels and larval feeding condition for both Japanese sardines and the autumn cohort of Neon squid during winter–early spring. The semi-decadal scale calm winter that occurred during the early 1970s triggered the first sharp increase of sardine stock around Japan.
4. A remarkable weakening of southward intrusion of the Oyashio off the east coast of Japan during 1988–91, resulted in a decrease in chlorophyll concentrations and mesozooplankton biomass in late spring–early summer of the Kuroshio-Oyashio transition region. Changes occurred in the dominant species of small pelagic fish, through successive recruitment failures of Japanese sardine.

Article Outline

1. Introduction
2. Linkage between Asian monsoon and ENSO
2.1. Features of Asian monsoon and its role in ENSO
2.2. Influence of ENSO events on summer and winter climate and hydrographic conditions in the western North Pacific
3. Evidence of biotic impacts of ENSO events in the western and central North Pacific
3.1. Eastward shift or spread of fishing grounds of skipjack, bigeye and albacore
3.2. Decrease of recruitment rate of neon squid and Japanese eel
3.3. Increase of plankton biomass in El Niño winters in the northern subtropical gyre south of Japan
3.4. Bleaching phenomena of corals around the Okinawa Islands
4. Discussion
4.1. Modulation of extra-tropical effect of ENSO by inter-decadal variations
4.2. Effects of ENSO and ocean/climate regime shifts on plankton biomass and population variation of small pelagic fish
5. Conclusion
Acknowledgements
References

1. Introduction

During El Niño events the climate in Northeast Asia is generally cool and wet in summer, and warm and calm in winter (Kurihara and Kimura). In the 1998 summer, near the end of 1997/98 El Niño, the East China Sea and southern part of the Japan Sea were covered with abnormally low saline water. This was the result of the huge amounts of fresh water that were discharge from the Yangtze River and caused poor year classes of Japanese common squid.During the recent cold regime that persisted between 1976/77 and 1987/88 in the North Pacific, Japanese sardine, Sardinops melanostictus, maintained a higher stock level, whereas stocks of anchovy, Engraulis spp., remained low (Kasai; Yasuda and Nakata).To clarify the features of this biological response associated with El Niño events and climate regime shifts, in this paper we provide evidence of several environmental and biological responses in the western and central North Pacific. First, we review the linkage between ENSO and the Asian Monsoon. Second, we present data on the extra-tropical effects of El Niño and La Niña on marine ecosystems and the ocean environment. Finally, we describe the modification of extra-tropical effects of ENSO by interdecadal variations in the ocean and the atmosphere.

2. Linkage between Asian monsoon and ENSO

2.1. Features of Asian monsoon and its role in ENSO

Climate of the western North Pacific is dominated by monsoon winds and precipitation. In summer, the southeast monsoon develops between the Tibetan Low and the North Pacific Subtropical High (Fig. 1a). When the summer monsoon encounters the Japanese mountain range, it produces a considerable amount of precipitation on the Pacific side of Japan. In winter, however, the northwesterly monsoon develops between the Siberian High and the Aleutian Low superimposed on the westerly wind (Fig. 1b).  相似文献   
10.
A precipitation system developed continuously along the western coastline of the Korean Peninsula and created considerable precipitation both along the coast and inland on 26 July 2011. In this study, the causes for this nearshore convective system are investigated from observations and the results of model experiments. Three-dimensional radar fields clearly show that a change of wind at the surface border played an important role in the development of the nearshore convection system. The simulation results, which are very similar to the observations, show that the surface border generated and maintained the convergence zone. The roughness change enhanced the convergence, and the interaction between the deepening cold pool and downward flow maintained the convergence zone. The surface mechanical discontinuity affected by the roughness change between sea and land formed the convergence (gradient of wind stress),which induced momentum transfer to the upper layer. The cold pool created a steep gradient of potential temperature and provided the reason for the propagated convergence zone with the downward flow. The maximum value of the surface change factor, which comprises the influencing factors for the long-lasting convective system, reflects the enhancement of the system at the coast.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号