首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
地球物理   5篇
地质学   2篇
自然地理   1篇
  2022年   1篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2016年   1篇
  2013年   1篇
  2008年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
Self-centering rocking walls offer the possibility of minimizing repair costs and downtimes, and also nullify the residual drift after seismic events, thanks to their self-centering properties. In this paper, the effect of axial stress ratio on the behavior of monolithic self-centering rocking walls is investigated by utilizing a developed finite element model. To verify the validity of the finite element model, results and observed damage in the model are compared with those of a full-scale wall test. The axial stress ratio is varied from 0.024 to 0.30 while keeping the other structural parameters constant. For qualitative damage evaluation, the observed damage in the model compared with expected damage states of desired performance levels. In order to evaluate the incurred damage quantitatively, the amount of crushing and damage in the wall is calculated by utilizing several ratios (crushing ratio and damage ratio). Furthermore, seismic response factors (i.e., μ, R and Cd) are calculated for different axial stress ratio values. The obtained results showed that, in order to satisfy the requirements of desired performance levels, the maximum axial stress ratio should be approximately within the range of 0.10–0.15. In addition, the maximum overall damage ratio and crushing ratio are suggested to be less than 5%. For axial stress ratio higher than 0.15, the flag-shaped pattern of hysteresis curves completely disappeared and the variation of displacement ductility is less sensitive to axial stress ratio. Considering the maximum axial stress ratio limited to 0.150, values of 4 and 3.5 are conservatively proposed as a period-independent response modification factor and displacement modification factor of the investigated structural wall, respectively.  相似文献   
2.
Water Resources - Groundwater performs an important role in the territory of the plains Garmsar. In this study, on the basis of water samples, which were obtained from the wells of the region,...  相似文献   
3.
Static liquefaction failure of a sloping ground occurs when the shear stress applied by a monotonic triggering load exceeds the undrained yield (peak) shear strength of the saturated liquefiable cohesionless soil. Current practices for determining the in-situ undrained yield strength for ground subject to static shear stress either rely on a suite of costly laboratory tests on undisturbed field samples or empirical correlations based on in-situ penetration tests which do not account for the effects of anisotropic consolidation, intermediate principal stress, and mode of shear on the degree of strain-softening and brittleness of cohesionless soils. This study investigates the effects of variations in the direction and relative magnitudes of principal stresses associated with different modes of shear and ground slopes on static liquefaction failure of cohesionless soils. Empirical relationships are developed between soil brittleness index and maximum excess pore water pressure ratio to characterize soil shearing behavior observed in a database of 271 undrained laboratory shear tests collected from the past literature. The application of these relationships for estimating the static liquefaction triggering strength of cohesionless soils under sloping grounds is described for plane-strain boundary conditions and the results are compared with those back-calculated for several cases of static liquefaction flow failures. The proposed procedure incorporates variations in mode of shear and initial stress anisotropy in an empirical formulation based on in-situ penetration tests.  相似文献   
4.
Static and dynamic behavior of hunchbacked gravity quay walls   总被引:2,自引:0,他引:2  
One of the parameters that can affect the lateral pressures behind a retaining wall is the back-face shape of the wall, which can be controlled by the designer, and has not been investigated experimentally. Therefore, in order to study this behavior, a set of 1g shaking table tests was carried out on hunched back gravity type quay walls made of concrete blocks. Crushed stone and silica sand were used in the backfill and subsoil, respectively. The subsoil was prepared by moist tamping. The models were fully instrumented and beside each earth pressure transducer a pore water pressure sensor was also installed behind the wall therefore the lateral effective stress acting on the wall could be calculated. Tests were performed with various base accelerations on models with different subsoil relative densities. The results show that the earth pressure increases at upper portions of the wall and decreases by the leaning slope at lower elevations. Depending on the back-face shape of the wall the total thrust and overturning moment would be increased or decreased after an earthquake. However, the hunched back-shape of the wall tends to raise the point of application of the total thrust exerted on the wall. Other advantages of hunched back walls are demonstrated as well.  相似文献   
5.
The Chah-Bazargan gabbroic intrusions are located in the south of Sanandaj–Sirjan zone. Precise U–Pb zircon SHRIMP ages of the intrusions show magmatic ages of 170.5 ± 1.9 Ma. These intrusions consist primarily of gabbros, interspersed with lenticular bodies of anorthosite, troctolite, clinopyroxenite, and wehrlite. The lenticular bodies show gradational or sharp boundaries with the gabbros. In the gradational boundaries, gabbros are mineralogically transformed into anorthosites, wehrlites, and/or clinopyroxenites. On the other hand, where the boundaries are sharp, the mineral assemblages change abruptly. There is no obvious deformation in the intrusions. Hence, the changes in mineral compositions are interpreted as the result of crystallization processes, such as fractionation in the magma chamber. Rock types with sharp boundaries show abrupt chemical changes, but the changes exhibit the same patterns of increasing and decreasing elements, especially of rare earth elements, as the gradational boundaries. Therefore, it is possible that all parts of the intrusions were formed from the same parental magma. Parts showing signs of nonequilibrium crystallization, such as cumulate features and sub-solidification, underwent fracturing and were interspersed throughout the magma chamber by late injection pulses or mechanical movements under mush conditions. The geological and age data show that the intrusions were formed from an Al-, Sr-, Fe-enriched and K-, Nb-depleted tholeiitic magma. The magma resulted from the partial melting of a metasomatized spinel demonstrated by negative Nb, P, Hf, and Ti, and positive Ba, Sr, and U anomalies typical of subduction-related magmas.  相似文献   
6.
Bulletin of Earthquake Engineering - Although self-centering rocking walls have shown acceptable performance in decreasing downtime, repair cost, and continuous serviceability, their energy...  相似文献   
7.
The end diaphragm of bridges are normally designed to resist lateral seismic forces imposed on the superstructure in earthquake prone regions. Using ductile diaphragms with high deformation capacity could reduce the seismic demands on the substructure and prevent costly damage under strong ground motions. The end diaphragms of steel tub girder bridges with high lateral stiffness and dominant shear behavior have a potential to be used as ductile fuse elements. In this study, a steel plate shear diaphragm(SPSD) is introduced as an external end diaphragm of tub girder steel bridges to reduce the seismic demands imposed on the substructure. Quasi static nonlinear analyses were conducted to evaluate responses of sixteen SPSDs with different boundary conditions, aspect ratios and diaphragm plate thicknesses. Moreover, nonlinear time history analyses were performed using three different ground motions corresponding to DBE and MCE level spectrums. Cyclic and time history analyses proved the proper behavior of SPSD and its efficiency to reduce seismic demands by more than 25%.  相似文献   
8.
Natural Resources Research - Improving oil recovery by CO2 injection continues to gain momentum in mature oil fields due to its favorable industrial and environmental benefits. One remediation for...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号