首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
大气科学   1篇
地球物理   5篇
地质学   4篇
海洋学   1篇
综合类   1篇
自然地理   1篇
  2019年   1篇
  2016年   1篇
  2014年   1篇
  2012年   3篇
  2011年   1篇
  2008年   1篇
  2007年   1篇
  2004年   1篇
  1997年   1篇
  1995年   2篇
排序方式: 共有13条查询结果,搜索用时 140 毫秒
1.
We recorded clear transients in the electric and magnetic fields upon sudden slip in stick–slip experiments on dry, cylindrically shaped, quartz-free rock specimens of basalt and peridotite with a 30° saw-cut (representing a fault) at confining pressures of up to 120 MPa. The amplitudes of the measured electric field signals were always higher at the electrode pair oriented parallel to the strike of the fault than at the pair oriented perpendicular. This anisotropy suggests a preferred electric polarization normal to the slip surface. The transients in the electric and magnetic fields were observed only when the fault slip occurred by stick–slip mode, not by a stable mode of the sliding, and the amplitudes of the electric field signals increased with increasing stress drop. It is suggested that the generation process of the electromagnetic signals is closely related to the characteristic behavior of the fault at the time of the initiation of slip during stick–slip events, probably with respect to the intensity of the signals. We propose that one or both of the following two processes characteristic of the fault at the time of the initiation of slip during stick–slip events are essential for the generation of detectable electromagnetic signals: rapid slip along the simulated fault and separation of the rock masses across the fault.  相似文献   
2.
Telemetric network observations of pulse-like geoelectric charge signals using a vertical dipole buried under the ground were undertaken at various observation sites over a wide area in Japan from April 1996. From continuous records of the signals during the six months following that, we attempted to select anomalous signals, possibly related to seismic electric activity. Special attention was paid to the elimination of noise resulting from industrial and meteorological electric activity, comparison with other electromagnetic signals in the VLF band and the relation between the precursor period and the distance from the eventual main shock that occurred in Japan. Four candidate precursor electric signals, which were not contaminated by industrial and meteorological electric activity, were then selected, of which the second appeared before the Akita-ken Nairiku-nanbu earthquake swarm, for which the maximum M = 5.9 occurred on 1996 August 11, and the third and fourth before the Chiba-ken Toho-oki earthquake, M = 6.6, on 1996 September 11. A tentative qualitative model explaining why the candidate precursory signal is related to stress building up before an earthquake is presented in terms of the electrification of gases released from fracturing rocks immediately prior to the main shock.  相似文献   
3.
Very few studies have conducted long-term observations of methane (CH4) flux over forest canopies. In this study, we continuously measured CH4 fluxes over an evergreen coniferous (Japanese cypress) forest canopy throughout 1?year, using a micrometeorological relaxed eddy accumulation (REA) system with tuneable diode laser spectroscopy (TDLS) detection. The Japanese cypress forest, which is a common forest type in warm-temperate Asian monsoon regions with a wet summer, switched seasonally between a sink and source of CH4 probably because of competition by methanogens and methanotrophs, which are both influenced by soil conditions (e.g., soil temperature and soil moisture). At hourly to daily timescales, the CH4 fluxes were sensitive to rainfall, probably because CH4 emission increased and/or absorption decreased during and after rainfall. The observed canopy-scale fluxes showed complex behaviours beyond those expected from previous plot-scale measurements and the CH4 fluxes changed from sink to source and vice versa.  相似文献   
4.
5.
Our objective was to track microbial processes associated with serial degradation of organic matter derived from algal blooms. To do this, we analyzed population fluctuations and growth responses of major phylogenetic groups of free-living marine bacteria. We used bromodeoxyuridine immunocytochemistry–fluorescence in situ hybridization methodology to examine marine bacterial community development during and after a diatom bloom in a mesocosm. We revealed that the Roseobacter/Rhodobacter, SAR11, Alteromonas, and Bacteroidetes groups were clearly major phylotypes responsible for most free-living bacterial biomass and production throughout the experiment. The clearest bacterial response was a proliferation of the Alteromonas group (cells with large volumes) during development of the bloom (up to 30?% of actively growing cells). Populations of these bacteria declined sharply thereafter, likely due to grazing. Alteromonas group responses suggest that these bacteria strongly influenced the flux of organic matter at an early bloom stage. The growth potential of Bacteroidetes was relatively large as the bloom peaked; this early development probably contributed to the initial stage of bloom decomposition. In contrast, the contribution of Roseobacter/Rhodobacter to total bacterial production increased at a late stage of decomposing of the bloom. The contributions of Betaproteobacteria, SAR11, and SAR86 groups to total bacterial abundance and production were relatively minor throughout the experiment. These results imply that the ability to utilize organic matter derived from diatoms varies among bacterial phylotypes, and, frequently, less abundant but ecological specialist taxa such as Alteromonas may play major roles in the flux of organic matter during diatom blooms.  相似文献   
6.
Landslide hazard mapping during a large scale earthquake   总被引:2,自引:0,他引:2  
This paper reports a method to make hazard maps of sediment disasters resulting from an earthquake and following heavy rainfall for the entire region of Gunma prefecture, Japan. Firstly, we identified the slopes in the study area, which are susceptible to large-scale landslides and land failures during an earthquake with a magnitude of seven on the Richter scale. To analyze the sheer volume of the data, we employed a statistical method to evaluate the susceptibility, mainly considering geomorphologic conditions. Secondly, we extracted mudflow and slope failure susceptible areas and potential flooding zones resulting from a damming at a river triggered by the earthquake and heavy rainfall, and we identified the settlements which would be isolated by the road disruption caused by the sediment disasters. As the result, 359 settlements were classified as potential isolation areas. Combining the above-mentioned susceptibility maps, we obtained two types of sediment disaster hazard maps of the study area, depicting the potential hazards which would occur during the earthquake and the disasters which would be caused by heavy rainfall following the quake, respectively. These hazard maps and the disaster information would be useful for the regional disaster prevention planning and countermeasures in the future.  相似文献   
7.
We have installed a laser strainmeter system in a deep tunnel about 1,000 m below the ground surface at Kamioka, Gifu, Japan. The system consists of three types of independent interferometers: (1) an EW linear strainmeter of the Michelson type with unequal arms, (2) an NS-EW differential strainmeter of the Michelson type with equal arms and (3) a NS absolute strainmeter of the Fabry–Perot type. These are configured in L-shaped vacuum pipes, each of which has a length of 100 m. (1) and (2) are highly sensitive (order of 10−13 strain) and have wide dynamical range (10−13–10−6). Observations with strainmeters (1) and (2) started on June 11, 2003. (3) is a new device for absolute-length measurements of the order of 10−9 of a long-baseline (100 m) Fabry–Perot cavity by the use of phase-modulated light. This third strainmeter will be ready for operation before the end of 2004. The laser source of strainmeters (1) and (2) is a frequency-doubled YAG laser with a wavelength of 532 nm. The laser frequency is locked onto an iodine absorption line and a stability of 2 × 10−13 is attained. The light paths of the laser strainmeter system are enclosed in SUS304 stainless steel pipes. The inside pressure is kept to be 10−4 Pa. Consequently, quantitative measurement of crustal strains of the order of 10−13 can be attained by employing the laser strainmeter system of (1) and (2) at Kamioka. This resolving power corresponds to that of a superconducting gravimeter. Using the laser strainmeter system, we expect to determine parameters related to fluid core resonance, core modes and core undertone as well as other geodynamic signals such as slow strain changes caused by silent earthquakes or slow earthquakes.  相似文献   
8.
Large earthquakes along the Kuril subduction zone in northern Japan are known to have caused damaging tsunami, although there is a little information on historical earthquakes and tsunami in this area because no documents exist before the 19th century that might refer to tsunami events. To determine the likely timing and size of future events we need information on their recurrence intervals and to do this for the prehistoric past we have investigated sediments located in the Kiritappu marsh in eastern Hokaido that we interpret as laid down by tsunami. Using reliable multiple lines of evidence from sedimentological, geomorphological, micropaleontological, and chronological results, we identify 13 tsunami sands. Two of these lie within a peat bed above a historical tephra, Ta-a (AD 1739); the upper one probably corresponds to the AD 1843 Tempo Tokachi-oki earthquake (M 8.2) tsunami, and the lower to either the AD 1952 Tokachi-oki earthquake (M 8.2) tsunami or the AD 1960 Chilean earthquake (M 9.5) tsunami. Underlying are 11 prehistoric tsunami sand beds (nine large sand beds and two smaller sand beds) deposited during the past 4000 years. Because of the wide spatial distribution of the large sand beds, and inundation distances inland of between 1200 to 3000 m, we suggest that they record unusually large tsunamis along the Kuril subduction zone. According to our analyses, these tsunami sands were derived from the coastal area and, although they do not show clear graded bedding, they commonly have gradational upper boundaries and erosional bases and include internal sedimentary structures such as plane beds, dunes, and current ripples, reflecting bedload transportation. Based on our results we calculate the recurrence interval of unusually large earthquakes (probably M 8.6) along the Kuril subduction zone as about 365–553 years and estimate the youngest large event to have occurred in the 17th century.  相似文献   
9.
Detailed field work at Okushiri Island and along the southwest coast of Hokkaido has revealed quantitatively (1) the advancing direction of tsunami on land, (2) the true tsunami height (i.e., height of tsunami, excluding its splashes, as measured from the ground) and (3) the flow velocity of tsunami on land, in heavily damaged areas. When a Japanese wooden house is swept away by tsunami, bolts that tie the house to its concrete foundation resist until the last moment and become bent towards the direction of the house being carried away. The orientations of more than 850 of those bent bolts and iron pipes (all that can be measured, mostly at Okushiri Island) and fell-down direction of about 400 trees clearly display how tsunami behaved on land and caused serious damage at various places. The true tsunami height was estimated by using several indicators, such as broken tree twigs and a window pane. The flow velocity of tsunami on land was determined by estimating the hydrodynamic force exerted on a bent handrail and a bent-down guardrail by the tsunami throughin situ strength tests.Contrary to the wide-spread recognition after the tsunami hazard, our results clearly indicate that only a few residential areas (i.e., Monai, eastern Hamatsumae, and a small portion at northern Aonae, all on Okushiri Island) were hit by a huge tsunami, with true heights reaching 10 m. Southern Aonae was completely swept away by tsunami that came directly from the focal region immediately to the west. The true tsunami height over the western sea wall of southern Aonae was estimated as 3 to 4 m. Northern Aonae also suffered severe damage due to tsunami that invaded from the corner zone of the sand dune (8 m high) and tide embankment at the northern end of the Aonae Harbor. This corner apparently acted as a tsunami amplifier, and tide embankment or breakwater can be quite dangerous when tsunami advances towards the corner it makes with the coast. The nearly complete devastation of Inaho at the northern end of Okushiri Island underscored the danger of tsunami whose propagation direction is parallel to the coast, since such tsunami waves tend to be amplified and tide embankment or breakwater is constructed low towards the coast at many harbors or fishing ports. Tsunami waves mostly of 2 to 4 m in true height swept away Hamatsumae on the southeast site of Okushiri Island where there were no coastal structures. Coastal structures were effective in reducing tsunami hazard at many sites. The maximum flow velocity at northern Aonae was estimated as 10 to 18 m/s (Tsutsumi et al., 1994), and such a high on-land velocity of tsunami near shore is probably due to the rapid shallowing of the deep sea near the epicentral region towards Okushiri Island. If the advancing direction, true height, and flow velocity of tsunami can be predicted by future analyses of tsunami generation and progagation, the analyses will be a powerful tool for future assessment of tsunami disasters, including the identification of blind spots in the tsunami hazard reduction.  相似文献   
10.
Onshore tsunami deposits resulting from the 1993 Southwest Hokkaido and 1983 Japan Sea earthquakes were described to evaluate the feasibility of tsunami deposits for inferring paleoseismic events along submarine faults. Tsunami deposits were divided into three types, based on their composition and aerial distribution: (A) deposits consisting only of floating materials, (B) locally distributed siliclastic deposits, and (C) widespread siliclastic deposits. The most widely distributed tsunami deposits consist of the first two types. Type C deposits are mostly limited to areas where the higher tsunami runup was observed. The scale of tsunami represented by vertical tsunami runup is an important factor controlling the volume of tsunami deposits. The thickest deposits, about 10 cm, occur behind coastal dunes. To produce thick siliclastic tsunami deposits, a suitable source area, such as sand bar or dune, must be available in addition to sufficient vertical tsunami runup. Estimation of the amounts of erosion and deposition indicates that tsunami deposits were derived from both onshore and shoreface regions. The composition and grain size of the tsunami deposits strongly reflect the nature of the sedimentary materials of their source area. Sedimentary structures of the tsunami deposits suggest both low and high flow régimes. Consequently, it seems very difficult to identify tsunami deposits based only on grain size distribution or sedimentary structure of a single site in ancient successions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号