首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
地球物理   7篇
地质学   3篇
天文学   2篇
自然地理   2篇
  2013年   1篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2006年   1篇
  2005年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1994年   1篇
排序方式: 共有14条查询结果,搜索用时 31 毫秒
1.
2007年4月1日,一次大海啸地震(MW8.1)使得所罗门群岛俯冲带在一个三联点处破裂。在这个三联点上,澳大利亚板块、所罗门海-伍德拉克盆地板块在不同滑动方向上同时向太平洋板块俯冲。大地震过程中,相关的滑动方向突变使得太平洋板块上部收敛滞弹性变形,这就产生了Simbo俯冲断层之上弧前的局部隆起,潜在地放大了局地海啸振幅。地震周期过程中的弹性形变似乎主要通过上冲的太平洋弧前来调节。这次地震显示了极其年轻的俯冲大洋岩石圈的孕震潜力和横贯坚实地质边界的破裂能力,也显示了引起隆起和海啸的复杂同震滑动的后果。  相似文献   
2.
特大地震(≥8.0级的地震)一般都含有构造板块之间边界岩体的突然滑动。这种板间的破裂通常出现在俯冲带特大逆冲事件的海沟斜坡区,会产生动态及静态应力变化,从而激活周边的板内余震(Christensen and Ruff,1988;Dmowskaetal,1988;Layetal,1989;Ammonetal,2008)。本文研究的地震序列展示一少见的例子———特大海沟斜坡的一次板内地震触发了广泛的板间断层活动,颠倒了典型的活动模式,从而广泛地扩大了地震和海啸灾害。2009年9月29日,在汤加俯冲带北端的外海沟斜坡发生矩震级8.1的正断层地震事件,该震开始破裂后的2分钟内,发生了总地震矩等于矩震级8.0级的第二个特大地震,它由两次(矩震级均为7.8级)板间下插逆冲大地震组成,导致了周边俯冲带巨型逆断层的破裂。联合的断层作用引发了海啸,局部地区抬升约12m,导致萨摩亚、美属萨摩亚和汤加192人死亡。地震信号的重叠掩盖了这样的事实:相隔约50km的性质不同的断层发生了不同几何形状的破裂,这些被触发的逆冲断层滑动只有通过详细的地震波分析才能揭示出来。在汤加北部俯冲带的大部分区域内,激活了广泛的板间和板内余震活动。  相似文献   
3.
We measured the concentrations and isotopic compositions of He, Ne, and Ar in 14 fragments from 12 different meteorites: three carbonaceous chondrites, six L chondrites (three most likely paired), one H chondrite, one R chondrite, and one ungrouped chondrite. The data obtained for the CV3 chondrites Ramlat as Sahmah (RaS) 221 and RaS 251 support the hypothesis of exposure age peaks for CV chondrites at approximately 9 Ma and 27 Ma. The exposure age for Shi?r 033 (CR chondrite) of 7.3 Ma is also indicative of a possible CR chondrite exposure age peak. The three L chondrites Jiddat al Harasis (JaH) 091, JaH 230, and JaH 296, which are most likely paired, fall together with Hallingeberg into the L chondrite exposure age peak of approximately 15 Ma. The two L chondrites Shelburne and Lake Torrens fall into the peaks at approximately 40 Ma and 5 Ma, respectively. The ages for Bassikounou (H chondrite) and RaS 201 (R chondrite) are approximately 3.5 Ma and 5.8 Ma, respectively. Six of the studied meteorites show clear evidence for 3He diffusive losses, the deficits range from approximately 17% for one Lake Torrens aliquot to approximately 45% for RaS 211. The three carbonaceous chondrites RaS 221, RaS 251, and Shi?r 033 all have excess 4He, either of planetary or solar origin. However, very high 4He/20Ne ratios occur at relatively low 20Ne/22Ne ratios, which is unexpected and needs further study. The measured 40Ar ages fit well into established systematics. They are between 2.5 and 4.5 Ga for the carbonaceous chondrites, older than 3.6 Ga for the L and H chondrites, and about 2.4 Ga for the R chondrite as well as for the ungrouped chondrite. Interestingly, none of our studied L chondrites has been degassed in the 470 Ma break‐up event. Using the amount of trapped 36Ar as a proxy for noble gas contamination due to terrestrial weathering we are able to demonstrate that the samples studied here are not or only very slightly affected by terrestrial weathering (at least in terms of their noble gas budget).  相似文献   
4.
The advent of high-resolution digital seismic recording and advances in computer technology enable the combination of traditional regional seismic network observations with direct seismogram modeling to improve estimates of small earthquake faulting geometry, depth, and size. We illustrate a combined modeling approach using observations from three earthquakes that occurred within the environs of the New Madrid Seismic Zone: two Missouri earthquakes from September 26, 1990 and May 4, 1991; and the southern Illinois earthquake of February 5, 1994. We also re-examine the faulting geometry for two events from the 1960s that are inconsistent with the current estimate of the regional stress field. Based on direct modeling of the long-period seismograms associated with these events, we revise earlier estimates of the earthquake parameters for the March 3, 1963 and July 21, 1967 Missouri earthquakes. Comparing the new and revised results with existing earthquake mechanisms in the region, we find that tension-axes are generally aligned in a N-S to NW-SE direction, while the compression-axes trend in a NE to E direction. An interesting exception to this pattern are the March 3, 1963 and two nearby earthquakes that lie within a well-defined 30-km long left step in seismicity near New Madrid.  相似文献   
5.
— The group-velocity distribution beneath the Arabian Plate is investigated using Love and Rayleigh waves. We obtained a balanced path coverage using seismograms generated by earthquakes located along the plate boundaries. We measured Love- and Rayleigh-wave group-velocity dispersion using multiple filter analysis and then performed a tomographic inversion using these observations to estimate lateral group velocity variations in the period range of 5–60?s. The Love- and Rayleigh-wave results are consistent and show that the average group velocity across Arabia increases with increasing period. The tomographic results also delineate first-order regional structure heterogeneity as well as the sharp transition between the Arabian shield and the Arabian platform. Systematic differences are observed in the distribution of the short-period group velocities across the two provinces, which are consistent with surface geology. The slower velocities in the platform reveal the imprint of its thick sedimentary section, while faster velocities correlate well with the exposed volcanic flows in the shield. Shear-wave velocity models for the two regions, obtained from the inversion of the group velocities, confirm results from previous studies of higher S-wave velocity in the upper crust beneath the shield. This may be due to the present remnants of the oceanic crust (ophiolite belts) associated with the island arcs evolutionary model of the Arabian shield.¶The mapping of the surface-wave group velocity using a large data can be used in constraining the regional structure at existing and planned broadband stations deployed in this tectonically complex region as part of the seismic monitoring under CTBT.  相似文献   
6.
Joint inversion of receiver function and surface wave dispersion observations   总被引:16,自引:0,他引:16  
We implement a method to invert jointly teleseismic P wave receiver functions and surface wave group and phase velocities for a mutually consistent estimate of earth structure. Receiver functions are primarily sensitive to shear wave velocity contrasts and vertical traveltimes, and surface wave dispersion measurements are sensitive to vertical shear wave velocity averages. Their combination may bridge resolution gaps associated with each individual data set. We formulate a linearized shear velocity inversion that is solved using a damped leastsquares scheme that incorporates a priori smoothness constraints for velocities in adjacent layers. The data sets are equalized for the number of data points and physical units in the inversion process. The combination of information produces a relatively simple model with a minimal number of sharp velocity contrasts. We illustrate the approach using noisefree and realistic noise simulations and conclude with an inversion of observations from the Saudi Arabian Shield. Inversion results for station SODA, located in the Arabian Shield, include a crust with a sharp gradient near the surface (shear velocity changing from 1.8 to 3.5 km s1 in 3 km) underlain by a 5kmthick layer with a shear velocity of 3.5 km s1 and a 27kmthick layer with a shear velocity of 3.8 km s1, and an upper mantle with an average shear velocity of 4.7 km s1. The crustmantle transition has a significant gradient, with velocity values varying from 3.8 to 4.7 km s1 between 35 and 40 km depth. Our results are compatible with independent inversions for crustal structure using refraction data.  相似文献   
7.
Published cosmogenic 36Cl production rates from Ca and K spallation differ by almost a factor of 2. In this paper we determine production rates of 36Cl from Ca and K in samples of known age containing little Cl. Ca-rich plagioclases and K-feldspars were separated from a total of 13 samples collected on the surfaces of four basaltic lava flows at Mt. Etna (38°N, Italy) and from a trachyte lava flow at Payun Matru volcano (36°S, Argentina). Eruption ages, determined by independent methods, range between 0.4 and 32 ka. Sample site elevations range between 500 and 2500 m. Corresponding scaling factors were calculated using five different published scaling models, four of which consider paleo-geomagnetic field variations integrated over the exposure durations. The resulting five data sets were then analyzed using a Bayesian statistical model that incorporates the major inherent uncertainties in a consistent way. Spallation production rates from Ca and K, considering all major uncertainties, are 42.2 ± 4.8 atoms 36Cl (g Ca)−1 a−1 and 124.9 ± 8.1 atoms 36Cl (g K)−1 a−1 normalized to sea level and high latitude using the scaling method of Stone (2000). Scaling models that account for paleo-geomagnetic intensity changes yield very similar mean values (at most +4%). If the uncertainties in the independent ages are neglected in the Bayesian model, the calculated element specific production rates would be about 12% higher. Our results are in agreement with previous production rate estimations both for Ca and K if only low Cl (i.e. ?20 ppm) samples are considered.  相似文献   
8.
The distribution of relocated seismicity and the evolving shape of fracture zones through time in the oceanic crust of the Australian Plate adjacent to the Australia:Pacific plate boundary south of New Zealand are used to constrain the deformation of this region of the Australian Plate, here called the Puysegur Block. Relocated seismicity reveals a broad distribution of earthquakes in the Puysegur Block on both inter- and intraplate structures, including two great (M8+) earthquakes in the region over the past twenty years, one of which occurred over 130 km from the plate boundary. Plate reconstructions from the Late Oligocene through Early–Mid Miocene allow us to determine the undeformed shape of fracture zones in the Puysegur Block, formed during the Paleogene when the plate boundary was dominantly a divergent mid-ocean ridge system. Comparing these reconstructions to the present-day shape of the fracture zones allows us to map the deformation that has occurred within the Puysegur Block since the fracture zones formed. These two sets of independent observations delineate a broad zone of deformation extending ~ 150 km into the plate interior from the Macquarie Ridge Complex, the modern plate boundary structure through the region. The persistence of this deformation through time indicates a link with the evolution of the plate boundary over the past ~ 25 Ma from divergence to translation and subduction of the Australian Plate further north at the Puysegur Trench. We infer that this deformation may be a result of stresses in the Puysegur Block resulting from the impingement of the subducting plate on the thickened lithosphere of southern New Zealand. Such a collision may resist subduction, and if resistance remains substantial, further deformation internal to the Puysegur Block may lead to a southward migration of the Australia:Pacific subduction interface and the capturing of this section of lithosphere onto the Pacific Plate.  相似文献   
9.
—A finite-source rupture model of the July 30, 1995, M w = 8.1 Antofagasta (Northern Chile) subduction earthquake is developed using body and surface waves that span periods from 20 to 290s. A long-period (150–290s) surface-wave spectral inversion technique is applied to estimate the average finite-fault source properties. Deconvolutions of broadband body waves using theoretical Green’s functions, and deconvolutions of broadband fundamental mode surface waves using empirical Green’s functions provided by a large aftershock, yield effective source time functions containing periods from 20 to 200s for many directivity parameters. The source time functions are used in an inverse radon transform to image a one-dimensional spatial model of the moment rate history. The event produced a predominantly unilateral southward rupture, yielding strong directivity effects on all seismic waves with periods less than a few hundred seconds. The aftershock information, spectral analysis, and moment rate distribution indicate a rupture length of 180–200km, with the largest slip concentrated in the first 120km, a rupture azimuth of 205°± 10° along the Chilean coastline, and a rupture duration of 60–68s with a corresponding average rupture velocity of 3.0–3.2km/s. The overall rupture character is quite smooth, accentuating the directivity effects and reducing the shaking intensity, however there are three regions with enhanced moment rate distributed along the rupture zone near the epicenter, 50 to 80km south of the epicenter, and 110 to 140km south of the epicenter.  相似文献   
10.
引言 地震学家经常开玩笑说,"阻止地震的最好办法就是布设地震台站。"为了记录地震信号或开展有针对性的有关地球结构的研究就需要布设地震仪,而地震的发生往往是变幻莫测的,在时间和空间上都绝对是非均匀的,所以安装地震仪的辛苦有时会徒劳无功。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号