首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  国内免费   2篇
地球物理   7篇
地质学   2篇
  2013年   2篇
  2009年   1篇
  2007年   6篇
排序方式: 共有9条查询结果,搜索用时 343 毫秒
1
1.
The mafic volcanic association is made up of OIB, E-MORB and N-MORB in the A'nyemaqen Paleozoic ophiolites. Compared with the same type rocks in the world, the mafic rocks generally display lower Nb/U and Ce/Pb ratios and some have Nb depletion and Pb enrichment. The OIB are LREE-enriched with (La/Yb)N =5―20, N-MORB are LREE-depleted with (La/Yb)N = 0.41―0.5. The OIB are featured by incompatible element enrichment and the N-MORB are obviously depleted with some metasomatic effect, and E-MORB are geochemically intermediated. These rocks are distributed around the Majixueshan OIB and gabbros in a thickness greater than a thousand meters and transitionally change along the ophiolite extension in a west-east direction, showing a symmetric distribution pattern as centered by the Majixueshan OIB, that is, from N-MORB, OIB and E-MORB association in the Dur'ngoi area to OIB in the Majixueshan area and then to N-MORB, OIB and E-MORB assemblage again in the Buqingshan area. By consideration of the rock association, the rock spatial distribution and the thickness of the mafic rocks in the Majixueshan, coupled with the metasomatic relationship between the OIB and MORB sources, it can be argued that the Majixueshan probably corresponds to an ancient hotspot or an ocean island formed by mantle plume on the A'nyemaqeh ocean ridge, that is the ridge-centered hotspot, tectonically similar to the present-day Iceland hotspot.  相似文献   
2.
Timing of the intermediate-basic igneous rocks developed in the area of Kuhai-A'nyêmaqên along the southern east Kunlun tectonic belt is a controversial issue. This paper presents new zircon SHRIMP U-Pb dating data for igneous zircons from the Kuhai gabbro and the Dur'ngoi diorite in the Kuhai-A'nyemaqen tectonic belt, which are 555±9 Ma and 493±6 Ma, respectively. The trace element geochemical features of the Kuhai gabbro and the Dur'ngoi diorite are similar to those of ocean island basalts (OIB) and island arc basalts (IAB), respectively. Thus, the Kuhai gabbro with the age of 555±9 Ma and OIB geochemical features is similar to the Yushigou oceanic ophiolite in the North Qilian orogen, whereas the Dur'ngoi diorite with the age of 493±6 Ma and IAB geochemical features is similar to the island arc volcanic rocks developed in the north Qaidam. The Late Neoproterozoic to Early Ordovician ophiolite complex in the area of Kuhai-A'nyêmaqên suggests that the southern margin of the "Qilian-Qaidam-Kunlun" archipelagic ocean in this period was located in the southern east Kunlun tectonic belt. Therefore, the southern east Kunlun tectonic belt in the early Paleozoic is not comparable to the Mianlüe tectonic belt in the Qinling orogenic belt.  相似文献   
3.

The late-Paleozoic mafic volcanic rocks occurring in the surrounding areas of the Gonghe basin are distributed in the A’nyêmaqên ophiolite zone, Zongwulong tectonic zone and Kuhai-Saishitang volcanic zone. The mafic volcanics in the A’nyêmaqên zone formed an ancient ridge-centered hotspot around the Majixueshan OIB, the Kuhai-Saishitang mafic rocks consist of E-MORB and continental rift basalts and the Zongwulong volcanic rocks are enriched N-MORB. The regionally low Nb/U and Ce/Pb ratios reflect the influence of the OIB material on the mafic magma source. From geochemistry, spatial distribution and tectonic relationship of the mafic rocks, an ancient triple-junction centered at the Majixueshan can be inferred. The existence of the Kuhai-Saishitang aulacogen may have provided a tectonic channel for the Majixueshan OIB materials metasomatizing the magma source for the Zongwulong rocks. The formation of the triple-junction and the rifting of the Zongwulong zone have separated the orogens and massifs in the region.

  相似文献   
4.
青藏高原东北缘印支期宗务隆造山带   总被引:42,自引:9,他引:33  
位于柴达木地块北缘构造带(柴北缘构造带)与南祁连造山带间的宗务隆构造带发育晚古生代、早中三叠世地层以及石炭纪蛇绿岩地体和具有岛弧性质的二叠纪—早三叠世中酸性火山岩。三个侵入宗务隆带南侧的海西—印支期花岗岩(246Ma天峻南山花岗岩、238Ma青海湖南山花岗岩和215Ma二郎洞花岗岩)分别与俯冲和后碰撞相关。两期明显的构造变形为印支期造山构造和第三纪陆内构造活动印记,前者以300余千米长的韧性剪切带为代表,后者以大规模指向南的逆冲推覆作用为特征。宗务隆构造带经历了由陆内裂陷、洋盆发育和俯冲—碰撞造山的演化过程,既不同于其南侧的柴北缘构造带也不属于北侧的南祁连造山带,而是一在柴北缘和南祁连造山带共同构建的加里东陆块上发育起来的、具有完整板块旋回的印支期造山带。  相似文献   
5.
青海省共和盆地周缘晚古生代镁铁质火山岩分属阿尼玛卿蛇绿混杂带,宗务隆构造带和苦海-赛什塘带。阿尼玛卿带正常洋中脊玄武岩(N-MORB)样品具有较高的~(87)Sr/~(86)Sr(t)比值(0.7066~0.7084)、高的ε_(Nd)(t)(12.2~12.8)和较低的~(206)Pb/~(204)Pb初始值(17.72~17.79)。这些同位素特征类似于秦岭勉略蛇绿岩带的N-MORB以及印度洋低~(206)Pb/~(204)Pb高~(143)Nd/~(144)Nd N-MORB。该带中的洋岛玄武岩(OIB)的~(87)Sr/~(86)Sr比值为0.7036~0.7044,ε_(Nd)(t)=4.4~4.8,~(206)Pb/~(204)Pb=17.45~17.62。其Sr和Nd同位素比值可与印度洋代表热点构造的洋岛玄武岩对比,但~(206)Pb/~(204)Pb低于印度洋的热点构造玄武岩,因此,具有类似印度洋低~(143)Nd/~(144)Nd比值MORB同位素特征。宗务隆构造带的N-MORB的Sr同位素比值在0.7041~0.7058,ε_(Nd)(t)=6.1~8.4,~(206)Pb/~(204)Pb=17.51~17.90,划归高~(143)Nd/~(144)Nd比值的N-MORB。苦海大陆裂谷玄武岩显示了高的~(87)Sr/~(86)Sr同位素比值(0.7115和0.7104)和低的ε_(Nd)(t)值(-1.7和-2.5),其~(206)Pb/~(204)Pb(17.64和17.46)与上述大洋玄武质岩石无显著区别。上述各岩类的同位素特征反映了它们生成的构造环境和陆壳组分混染的程度。阿尼玛卿带的N-MORB代表了典型的来自亏损地幔源区的洋中脊产物。与勉略带同类岩石可能来自同一源区。OIB可能属于热点构造成因的洋岛产物并与MORB一起构成了阿尼玛卿洋洋壳。宗务隆带MORB同样代表了主要源自相对亏损地幔的洋脊产物并指示宗务隆带曾开裂成洋。苦海大陆裂谷玄武岩极高的Sr和低的Nd同位素比值是陆壳物质组分的强烈印记,这与该类火山岩发育在前寒武纪基底之上不无关系。结合本区大洋玄武岩普遍低的Nb/U和Ce/Pb比值,推测它们可能源自EMII与DMM物质的交代混合。按照习惯的想法,明显的Dupal异常(△~(208)Pb/~(204)Pb值=46~103和△~(207)Pb/~(204)Pb值=4~18;大多样品~(87)Sr/~(86)Sr>0.704)指示这些岩石在空间上代表了来自南半球印度洋位置的古洋壳残余。但是,北半球愈来愈多的Dupal异常的发现有可能指示它们是类似现今东南亚多洋岛构造历经"汇聚式(focused)俯冲"的产物。此外,宗务隆带MORB的Dupal异常指示本区古特提斯域的北界较先前所定还要北推200km。  相似文献   
6.
The Qinling Orogenic Belt is divided commonly by the Fengxian-Taibai strike-slip shear zone and the Huicheng Basin into the East and West Qinling mountains,which show significant geological differences after the Indosinian orogeny.The Fengxian-Taibai fault zone and the Meso-Cenozoic Huicheng Basin,situated at the boundary of the East and West Qinling,provide a natural laboratory for tectonic analysis and sedimentological study of intracontinental tectonic evolution of the Qinling Orogenic Belt.In order to explain the dynamic development of the Huicheng Basin and elucidate its post-orogenic tectonic evolution at the junction of the East and West Qinling,we studied the geometry and kinematics of fault zones between the blocks of West Qinling,as well as the sedimentary fill history of the Huicheng Basin.First,we found that after the collisional orogeny in the Late Triassic,post-orogenic extensional collapse occurred in the Early and Middle Jurassic within the Qinling Orogenic Belt,resulting in a series of rift basins.Second,in the Late Jurassic and Early Cretaceous,a NE-SW compressive stress field caused large-scale sinistral strike-slip faults in the Qinling Orogenic Belt,causing intracontinental escape tectonics at the junction of the East and West Qinling,including eastward finite escape of the East Qinling micro-plate and southwest lateral escape of the Bikou Terrane.Meanwhile,the strike-slip-related Early Cretaceous sedimentary basin was formed with a right-order echelon arrangement in sinistral shear zones along the southern margin of the Huicheng fault.Overall during the Mesozoic,the Huicheng Basin and surrounding areas experienced four tectonic evolutionary stages,including extensional rift basin development in the Early and Middle Jurassic,intense compressive uplift in the Late Jurassic,formation of a strike-slip extensional basin in the Early Cretaceous,and compressive uplift in the Late Cretaceous.  相似文献   
7.
Tectonics of South China continent and its implications   总被引:36,自引:0,他引:36  
This paper aims at exploring the tectonic characteristics of the South China Continent(SCC)and extracting the universal tectonic rules from these characteristics,to help enrich the plate tectonic theory and better understand the continental dynamic system.For this purpose,here we conduct a multi-disciplinary investigation and combine it with the previous studies to reassess the tectonics and evolution of SCC and propose that the tectonic framework of the continent comprises two blocks,three types of tectonic units,four deformation systems,and four evolutionary stages with distinctive mechanism and tectonic characteristics since the Neoproterozoic.The four evolutionary stages are:(1)The amalgamation and break-up of the Neoproterozoic plates,typically the intracontinental rifting.(2)The early Paleozoic and Mesozoic intracontinental orogeny confined by plate tectonics,forming two composite tectonic domains.(3)The parallel operation of the Yangtze cratonization and intracontinental orogeny,and multi-phase reactivation of the Yangtze craton.(4)The association and differentiation evolution of plate tectonics and intracontinental tectonics,and the dynamic characteristics under the Meso-Cenozoic modern global plate tectonic regime.  相似文献   
8.
The late-Paleozoic mafic volcanic rocks occurring in the surrounding areas of the Gonghe basin are distributed in the A'nyêmaqên ophiolite zone, Zongwulong tectonic zone and Kuhai-Saishitang volcanic zone. The mafic volcanics in the A'nyêmaqên zone formed an ancient ridge-centered hotspot around the Majixueshan OIB, the Kuhai-Saishitang mafic rocks consist of E-MORB and continental rift basalts and the Zongwulong volcanic rocks are enriched N-MORB. The regionally low Nb/U and Ce/Pb ratios reflect the influence of the OIB material on the mafic magma source. From geochemistry, spatial distribution and tectonic relationship of the mafic rocks, an ancient triple-junction centered at the Majixueshan can be inferred. The existence of the Kuhai-Saishitang aulacogen may have provided a tectonic channel for the Majixueshan OIB materials metasomatizing the magma source for the Zongwulong rocks. The formation of the triple-junction and the rifting of the Zongwulong zone have separated the orogens and massifs in the region.  相似文献   
9.

Timing of the intermediate-basic igneous rocks developed in the area of Kuhai-A’nyêmaqên along the southern east Kunlun tectonic belt is a controversial issue. This paper presents new zircon SHRIMP U-Pb dating data for igneous zircons from the Kuhai gabbro and the Dur’ngoi diorite in the Kuhai-A’nyemaqen tectonic belt, which are 555±9 Ma and 493±6 Ma, respectively. The trace element geochemical features of the Kuhai gabbro and the Dur’ngoi diorite are similar to those of ocean island basalts (OIB) and island arc basalts (IAB), respectively. Thus, the Kuhai gabbro with the age of 555±9 Ma and OIB geochemical features is similar to the Yushigou oceanic ophiolite in the North Qilian orogen, whereas the Dur’ngoi diorite with the age of 493±6 Ma and IAB geochemical features is similar to the island arc volcanic rocks developed in the north Qaidam. The Late Neoproterozoic to Early Ordovician ophiolite complex in the area of Kuhai-A’nyêmaqên suggests that the southern margin of the “Qilian-Qaidam-Kunlun” archipelagic ocean in this period was located in the southern east Kunlun tectonic belt. Therefore, the southern east Kunlun tectonic belt in the early Paleozoic is not comparable to the Mianlüe tectonic belt in the Qinling orogenic belt.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号