首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
测绘学   1篇
地球物理   1篇
海洋学   2篇
  2019年   1篇
  2017年   1篇
  2009年   1篇
  2007年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Structures in locations susceptible to severe seismic disturbances should be designed properly in order to resist lateral forces induced by earthquake motions. Steel offshore platforms are some of those structures which are built to withstand environmental and accidental loads during oil exploitation operation. Particular attention is being paid to earthquake loads in seismic active areas because it directly influences the capacity of the offshore installations.

In this paper, a small-scaled planar platform has been modelled analytically using nonlinear finite element program, based on an experimental test, conducted simultaneously in order to assess the local and global behavior of pile–leg interaction in Jacket Type Offshore Platforms (JTOPs). A combination of nonlinear beam column elements and fatigue affected elements are used to capture the inelastic cyclic behavior of planar frame as accurately as possible. Results of analytical tests are to be compared with experiments and it is concluded that an analytical approach can be best used for modelling JTOPs with reasonable accuracy regardless of the type and scale of the structure. Moreover, a special study on joints has been carried out and the best model has been selected to simulate brittle behavior of joints resulting from heat affected zone.  相似文献   

2.
In recent years, considerable amount of effort has been made to design earthquake resistant offshore structures in seismic active areas. In order to achieve this objective, all components of a typical structure should function properly to dissipate seismically-induced energy within the members. Among components of an offshore installation, braces are of significant importance as they contribute substantially to total energy dissipation of the structure. Buckling in compression and yielding in tension assist the process of energy absorption. Nevertheless, the functionality of braces is dependent upon their joints where joint-cans are included to avoid any brittle fracture and unpredicted failure mechanisms.In this paper, special attention is being paid to energy dissipation of jacket type offshore platforms with two different pile–leg interactions. A case study representing an offshore platform is studied both analytically and experimentally. Analytical models are validated step by step based on available experimental tests and observations on individual members. Several parameters such as cyclic behavior, maximum bearing load and most importantly energy dissipation of two different 2D frames are investigated. Results provide promising insights into design and fabrication of fixed platforms with different pile–leg interactions.  相似文献   
3.
Performance evaluation is a critical step for land use/land cover (LULC) change modelling. It can be conducted through pixel quantity and its geographical location according to majority of current approaches. It is hence important to know to what extent spatial patterns of a given landscape are properly replicated in simulated LULC maps. Therefore, a new validation metric, named as landscape accuracy metric (LAM), is introduced by inspiration from landscape ecology. Unlike pixel quantity validation metrics, model performance is measured by LAM through quantifying spatial patterns including structure, composition and configuration attributes. The functionality of LAM was studied to assess the performance of the built-up change simulation under historical, ecological and stochastic scenarios, applying Cellular Automata Markov model. LAM is a flexible measure such that modellers can apply this metric through adding or eliminating various metrics of their interest in a selective manner and under different environmental circumstances.  相似文献   
4.
Earthquake engineers have made a lot of efforts to derive a comprehensive set of closed form expressions for performance evaluation of frames, which are already presented in guidelines such as SAC/FEMA. These analytical expressions have been developed to estimate the annual probability of exceeding a limit state. In the process of such seismic assessments, some essential assumptions are adopted to simplify the process. One of these fundamental assumptions declares that drift demand at any seismic intensity level follows a lognormal distribution around its median. To investigate the validity of this assumption, this paper describes a case study of the types of errors that could be produced by using the sample median as the central tendency. Based on the Maximum Likelihood Estimation method as well as other statistical evidence, this paper proposes the use of the sample geometric mean instead of the sample median for the central tendency. Further, the results of seismic reliability evaluations of 4 sample frames are compared based on utilizing both the geometric mean and the sample median. In this process, both first and second order power law fits of the hazard curve are implemented to compare the effects of hazard estimation and the selection of the central tendency on the final results. It is observed in the application example that the sample geometric mean could lead to more accurate results.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号