首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   1篇
地球物理   1篇
地质学   1篇
  2017年   1篇
  2011年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Elevated shorelines and lake sediments surrounding Issyk Kul, the world's second largest mountain lake, record fluctuating lake levels during Quaternary times. Together with bathymetric and geochemical data, these markers document alternating phases of lake closure and external drainage. The uppermost level of lake sediments requires a former damming of the lake's western outlet through the Boam gorge. We test previous hypothesised ice or landslide dam failures by exploring possible links between late Quaternary lake levels and outbursts. We review and recompile the chronology of reported changes in lake site, and offer new ages of abandoned shorelines using 14C in bivalve and gastropod shells, and plant detritus, as well as sand lenses in delta and river sediments using Infrared Stimulated Luminescence. Our dates are consistent with elevated lake levels between ~45 ka and 22 ka. Cosmogenic 10Be and 26Al exposure ages of fan terraces containing erratic boulders (>3 m) downstream of the gorge constrain the timing of floods to 20.5–18.5 ka, postdating a highstand of Issyk Kul. A flow‐competence analysis gives a peak discharge of >104 m3 s–1 for entraining and transporting these boulders. Palaeoflood modelling, however, shows that naturally dammed lakes unconnected to Issyk Kul could have produced such high discharges upon sudden emptying. Hence, although our data are consistent with hypotheses of catastrophic outburst floods, average lake‐level changes of up to 90 mm yr–1 in the past 150 years were highly variable without any outbursts, so that linking lake‐level drops to catastrophic dam breaks remains ambiguous using sedimentary archives alone. This constraint may readily apply to other Quaternary lakes of that size elsewhere. Nonetheless, our reconstructed Pleistocene floods are among the largest reported worldwide, and motivate further research into the palaeoflood hydrology of Central Asia. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
2.
The northern Tien Shan is the northern front of the Himalayan mountain belt, which resulted from the collision between the Indian and Eurasian Plates. This region encompasses the most active seismic zones of the orogen, which generated the strongest (M > 8) earthquakes. Since there are scarcely any written accounts, the only way to trace back strong earthquakes is the paleoseismologic method. Since 1984 we have been studying the northwestern Issyk Kul’ basin, where there are differently directed anticlines, which constitute the Kungei meganticline. Here, several active tectonic structures (faults, folds) are located, whose development was accompanied by strong earthquakes. Our field studies of 2008 in the Iiri-Taldybulak Valley, along the adyrs (foothills) of the Kungei-Ala-Too Range, revealed two unknown historical earthquakes. The first one, which occurred along the southern rupture in the late 7th century A.D., gave rise to a seismic scarp; the latter broke through the river floodplain and a tash-koro (ancient settlement). The second one, which occurred along the northern rupture in the late 9th century A.D., increased the height of the seismic scarp, existing on the Early Holocene and older terraces. Note that this region already records a strong seismic event around 500 A.D. Archeologic data have revealed one more strong earthquake, which took place in the 14th century A.D. Note that the above-mentioned strong seismic events are coeval with the decline of the nomadic cultures (Wusun, Turkic, Mogul) in the northern Tien Shan and Zhetysu (Semirech’e).  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号