首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   2篇
测绘学   3篇
大气科学   1篇
地球物理   6篇
地质学   6篇
天文学   1篇
自然地理   5篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1990年   1篇
排序方式: 共有22条查询结果,搜索用时 15 毫秒
1.
Structural crust is a thin layer formed on the soil surface after a rainstorm. The crust is the result of a physical segregation and rearrangement of soil particles in a way that affects some of the soil properties, such as infiltration, runoff and soil erosion. In practice, there is no rapid, in situ method for monitoring, assessing and mapping crust intensity and quality. In this study, a controlled spectral investigation of the structural crust across the NIR–SWIR spectral region was conducted on three selected Israeli soils, to study the potential of reflectance radiation to detect structural crust in soils. Two major factors served as the driving forces for this study: (1) there is no valid method for in situ assessment of the crust's characteristics in the agriculture field, and (2) the crust might bias thematic remote sensing of soils, because the thin layer of crust blocks photon–matter interaction, which represents the relevant soil body. Through the use of a laboratory rainfall simulator and a sensitive spectrometer, it was revealed that for three selected soils, significant spectral differences occurred between the crust and its bulk soil. The spectral information was found to be related to changes in particle size distribution and texture at the surface of the soil. This conclusion was based on indications of absorption of OH in clay lattice, OH in adsorbed water and CO3 in carbonates. It was concluded that the structural crust is a phenomenon that should not be ignored by remote-sensing users. In fact, in the field of agriculture, the spectral properties of crust can be used as tools for estimating the crust's intensity.  相似文献   
2.
This paper presents a new parallel domain decomposition algorithm based on integer linear programming (ILP), a mathematical optimization method. To minimize the computation time of coastal ocean circulation models, the ILP decomposition algorithm divides the global domain in local domains with balanced work load according to the number of processors and avoids computations over as many as land grid cells as possible. In addition, it maintains the use of logically rectangular local domains and achieves the exact same results as traditional domain decomposition algorithms (such as Cartesian decomposition). However, the ILP decomposition algorithm may not converge to an exact solution for relatively large domains. To overcome this problem, we developed two ILP decomposition formulations. The first one (complete formulation) has no additional restriction, although it is impractical for large global domains. The second one (feasible) imposes local domains with the same dimensions and looks for the feasibility of such decomposition, which allows much larger global domains. Parallel performance of both ILP formulations is compared to a base Cartesian decomposition by simulating two cases with the newly created parallel version of the Stevens Institute of Technology’s Estuarine and Coastal Ocean Model (sECOM). Simulations with the ILP formulations run always faster than the ones with the base decomposition, and the complete formulation is better than the feasible one when it is applicable. In addition, parallel efficiency with the ILP decomposition may be greater than one.  相似文献   
3.
The stabilized northwestern (NW) Negev vegetated linear dunes (VLD) of Israel extend over 1300 km2 and form the eastern end of the Northern Sinai – NW Negev Erg. This study aimed at identifying primary and subsequent dune incursions and episodes of dune elongation by investigating dune geomorphology, stratigraphy and optically stimulated luminescence (OSL) dating. Thirty-five dune and interdune exposed and drilled section were studied and sampled for sedimentological analyses and OSL dating, enabling spatial and temporal elucidation of the NW Negev dunefield evolution.In a global perspective the NW Negev dunefield is relatively young. Though sporadic sand deposition has occurred during the past 100 ka, dunes began to accumulate over large portions of the dunefield area only at ~23 ka. Three main chronostratigraphic units, corresponding to three (OSL) age clusters, were found throughout most of the dunefield, indicating three main dune mobilizations: late to post last glacial maximum (LGM) at 18–11.5 ka, late Holocene (2–0.8 ka), and modern (150–8 years). The post-LGM phase is the most extensive and it defined the current dunefield boundaries. It involved several episodes of dune incursions and damming of drainage systems. Dune advancement often occurred in rapid pulses and the orientation of VLD long axes indicates similar long-term wind directions. The late Holocene episode included partial incursion of new sand, reworking of Late Pleistocene dunes as well as limited redeposition. The modern sand movement only reactivated older dunes and did not lengthen VLDs.This aeolian record fits well with other regional aeolian sections. We suggest that sand supply and storage in Sinai was initiated by the Late Pleistocene exposure of the Nile Delta sands. Late Pleistocene winds, substantially stronger than those usually prevailing since the onset of the Holocene, are suggested to have transported the dune sands across Sinai and into the northwestern Negev.Our results demonstrate the sensitivity of vegetated linear dunes located along the (northern) fringe of the sub-tropical desert belt to climate change (i.e. wind) and sediment supply.  相似文献   
4.
Flood hydrographs from ephemeral streams in arid areas provide valuable information for assessing run‐off and groundwater recharge. However, such data are often scarce or incomplete, especially in hyper‐arid regions. The hypothesis of this study was that it is possible to reconstruct a hydrograph of a specific point along an ephemeral stream with the knowledge of only the peak flow rate of a flood event at that point and that this can be done at almost every point along the stream. The feasibility of this approach lies in the shape of the recession stage of the flood hydrograph, which is known to be a repeating phenomenon. The recession stage comes immediately after the peak flow rate, when it begins its decline, and lasts until the flood is extinguished. A general shape of the flood recession stage can be provided. Because the recession stage represents ~80% of the duration of a flood event, it can provide a general idea of the flood hydrograph's shape. A simple model based on geometric progression is suggested to describe the repeating recession stage of a flood. The advantage of the proposed model is that it requires only one parameter: the recession characteristic at a fixed point along the ephemeral stream, termed recession coefficient q. By knowing the recession coefficient of a fixed point and the peak flow rate of a flood event at that point, one can plot the flood hydrograph. A good agreement is shown between the observed and computed values of the recession stage. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
5.
The effects of estuarine circulation and tidal trapping on transport in the Hudson estuary were investigated by a large-scale, high-resolution numerical model simulation of a tracer release. The modeled and measured longitudinal profiles of surface tracer concentrations (plumes) differ from the ideal Gaussian shape in two ways: on a large scale the plume is asymmetric with the downstream end stretching out farther, and small-scale (1–2 km) peaks are present at the upstream and downstream ends of the plume. A number of diagnostic model simulations (e.g., remove freshwater flow) were performed to understand the processes responsible for these features. These simulations show that the large-scale asymmetry is related to salinity. The salt causes an estuarine circulation that decreases vertical mixing (vertical density gradient), increases longitudinal dispersion (increased vertical and lateral gradients in longitudinal velocities), and increases net downstream velocities in the surface layer. Since salinity intrusion is confined to the downstream end of the tracer plume, only that part of the plume is effected by those processes, which leads to the largescale asymmetry. The small-scale peaks are due to tidal trapping. Small embayments along the estuary trap water and tracer as the plume passes by in the main channel. When the plume in the main channel has passed, the tracer is released back to the main channel, causing a secondary peak in the longitudinal profile.  相似文献   
6.
It is generally held that subtle changes in sandy environments are very difficult to detect in imagery. Nonetheless, this study demonstrates how synthetic aperture radar (SAR) interferometric decorrelation can be used to identify changes in individual sand dunes. The use of coherence maps over time facilitates the analysis of dune dynamics, both temporally and spatially. The Ashdod‐Nizzanim coastal dunes, along the southern coastal plain of Israel, were chosen as an illustrative example of the analysis of dune dynamics. High‐resolution TerraSAR‐X (TSX) radar images covering the entire research area were acquired for the period February to July 2012, together with meteorology data (wind and rain) for the area. The coherence results enabled the stability of individual dunes to be described as a function of time. It was found that the dune crests were more stable than the windward slopes and that the degree of stability was dependent on the distance of the dune from the sea. The results of this study show the potential of using interferometric synthetic aperture radar (InSAR) decorrelation for aeolian studies, even in areas characterized by low coherence. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
7.
Ocean Dynamics - We describe the design, implementation, and performance of a fully automated Santos Operational Forecasting System (SOFS), built to monitor and predict short-term (< 3 days)...  相似文献   
8.
The rapid expansion of urbanization along the world’s coastal areas requires a more comprehensive and accurate understanding of the coastal ocean. Over the past several decades, numerical ocean circulation models have tried to provide such insight, based on our developing understanding of physical ocean processes. The systematic establishment of coastal ocean observation systems adopting cutting-edge technology, such as high frequency (HF) radar, satellite sensing, and gliders, has put such ocean model predictions to the test, by providing comprehensive observational datasets for the validation of numerical model forecasts. The New York Harbor Observing and Prediction System (NYHOPS) is a comprehensive system for understanding coastal ocean processes on the continental shelf waters of New York and New Jersey. To increase confidence in the system’s ocean circulation predictions in that area, a detailed validation exercise was carried out using HF radar and Lagrangian drifter-derived surface currents from three drifters obtained between March and October 2010. During that period, the root mean square (RMS) differences of both the east–west and north–south currents between NYHOPS and HF radar were approximately 15 cm s?1. Harmonic analysis of NYHOPS and HF radar surface currents shows similar tidal ellipse parameters for the dominant M2 tide, with a mean difference of 2.4 cm s?1 in the semi-major axis and 1.4 cm s?1 in the semi-minor axis and 3° in orientation and 10° in phase. Surface currents derived independently from drifters along their trajectories showed that NYHOPS and HF radar yielded similarly accurate results. RMS errors when compared to currents derived along the trajectory of the three drifters were approximately 10 cm s?1. Overall, the analysis suggests that NYHOPS and HF radar had similar skill in estimating the currents over the continental shelf waters of the Middle Atlantic Bight during this time period. An ensemble-based set of particle tracking simulations using one drifter which was tracked for 11 days showed that the ensemble mean separation generally increases with time in a linear fashion. The separation distance is not dominated by high frequency or short spatial scale wavelengths suggesting that both the NYHOPS and HF radar currents are representing tidal and inertial time scales correctly and resolving some of the smaller scale eddies. The growing ensemble mean separation distance is dominated by errors in the mean flow causing the drifters to slowly diverge from their observed positions. The separation distance for both HF radar and NYHOPS stays below 30 km after 5 days, and the two technologies have similar tracking skill at the 95 % level. For comparison, the ensemble mean distance of a drifter from its initial release location (persistence assumption) is estimated to be greater than 70 km in 5 days.  相似文献   
9.
This paper introduces an advanced method based on remote sensing and Geographic Information System for urban open space extraction combining spectral and geometric characteristics. From both semantic and remote sensing perspectives, a hybrid hierarchy structure and class organization of open space are issues and mapped from one to another. Based on per-pixel and segmentation mechanism separately, two classification approaches are performed. Owing to prior of spatial aggregation and spectral contribution, the segmentation-based classification exhibits its superiority over a pixel-based classification. Finally a GIS-based post procedure is hired to eliminate some unsuitable open space components in both spatial and numerical constraints on the one hand, and separate open space some fabrics from fused remote sensing classes by defining their Shape Index on the other hand. The case study of Beer Sheva based on ASTER data proves this method is a feasible way for open space extraction.  相似文献   
10.
The shortage of fresh water in Turkmenistan may be partially alleviated by runoff water from takyrs. However, anthropogenic degradation of takyrs over the past few decades has reduced their efficacy as catchment areas. The main goal of this study was to map the spatial extent of takyrs and their change over time. Digital image processing of Landsat MSS and Landsat 7 ETM+ images were used to identify, map and classify the takyrs and estimate their overall area and degradation rates. Thereafter, a change detection procedure was applied. Results retrieved from Landsat MSS images of southern Turkmenistan (1972-1975) showed a total area of non-degraded takyr surfaces of ∼20,000 km2, whereas those from Landsat 7 ETM+ images (2002-2003) showed a total non-degraded takyr area of ∼16,000 km2. These include ∼8000 km2 which were degraded and ∼4000 km2 that were only detected by the ETM+ due to its improved spectral resolution. Accuracy was assessed by comparing the Landsat results with higher spatial resolution images of QuickBird. Additional ground points located with GPS measurements validated the classification results. We were thus able to assess the takyr areas degraded over the past decades, and find ∼16,000 km2 of non-degraded takyrs suitable for water harvesting.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号