首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   1篇
测绘学   1篇
大气科学   1篇
地球物理   6篇
地质学   6篇
天文学   79篇
自然地理   5篇
  2019年   1篇
  2015年   1篇
  2014年   1篇
  2011年   1篇
  2010年   2篇
  2009年   4篇
  2008年   6篇
  2007年   4篇
  2006年   5篇
  2005年   9篇
  2004年   14篇
  2003年   9篇
  2002年   12篇
  2001年   10篇
  2000年   5篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
排序方式: 共有98条查询结果,搜索用时 31 毫秒
1.
2.
3.
We produce mock angular catalogues from simulations with different initial power spectra to test methods that recover measures of clustering in three dimensions, such as the power spectrum, variance and higher order cumulants. We find that the statistical properties derived from the angular mock catalogues are in good agreement with the intrinsic clustering in the simulations. In particular, we concentrate on the detailed predictions for the shape of the power spectrum, P ( k ). We find that there is good evidence for a break in the galaxy P ( k ) at scales in the range 0.02< k <0.06 h Mpc−1, using an inversion technique applied to the angular correlation function measured from the APM Galaxy Survey. For variants on the standard cold dark matter (CDM) model, a fit at the location of the break implies Ω h =0.45±0.10, where Ω is the ratio of the total matter density to the critical density, and Hubble's constant is parametrized as H 0=100 h km s−1 Mpc−1. On slightly smaller, though still quasi-linear scales, there is a feature in the APM power spectrum where the local slope changes appreciably, with the best match to CDM models obtained for Ω h ≃0.2. Hence the location and narrowness of the break in the APM power spectrum combined with the rapid change in its slope on quasi-linear scales cannot be matched by any variant of CDM, including models that have a non-zero cosmological constant or a tilt to the slope of the primordial P ( k ). These results are independent of the overall normalization of the CDM models or any simple bias that exists betwen the galaxy and mass distributions.  相似文献   
4.
We present measurements of the higher order clustering of red and blue galaxies as a function of scale and luminosity made from the two-degree field galaxy redshift survey (2dFGRS). We use a counts-in-cells analysis to estimate the volume-averaged correlation functions,     , as a function of scale up to the order of   p = 5  , and also the reduced void probability function. Hierarchical amplitudes are constructed using the estimates of the correlation functions:     . We find that (i) red galaxies display stronger clustering than blue galaxies at all orders measured; (ii) red galaxies show values of   S p   that are strongly dependent on luminosity whereas blue galaxies show no segregation in   S p   within the errors; this is remarkable given the segregation in the variance; (iii) the linear relative bias shows the opposite trend to the hierarchical amplitudes, with little segregation for the red sequence and some segregation for the blue; (iv) faint red galaxies deviate significantly from the 'universal' negative binomial reduced void probabilities followed by all other galaxy populations. Our results show that the characteristic colour of a galaxy population reveals a unique signature in its spatial distribution. Such signatures will hopefully further elucidate the physics responsible for shaping the cosmological evolution of galaxies.  相似文献   
5.
6.
7.
We investigate the dependence of the strength of galaxy clustering on intrinsic luminosity using the Anglo-Australian two degree field galaxy redshift survey (2dFGRS). The 2dFGRS is over an order of magnitude larger than previous redshift surveys used to address this issue. We measure the projected two-point correlation function of galaxies in a series of volume-limited samples. The projected correlation function is free from any distortion of the clustering pattern induced by peculiar motions and is well described by a power law in pair separation over the range     . The clustering of     galaxies in real space is well-fitted by a correlation length     and power-law slope     . The clustering amplitude increases slowly with absolute magnitude for galaxies fainter than M *, but rises more strongly at higher luminosities. At low luminosities, our results agree with measurements from the Southern Sky Redshift Survey 2 by Benoist et al. However, we find a weaker dependence of clustering strength on luminosity at the highest luminosities. The correlation function amplitude increases by a factor of 4.0 between     and −22.5, and the most luminous galaxies are 3.0 times more strongly clustered than L * galaxies. The power-law slope of the correlation function shows remarkably little variation for samples spanning a factor of 20 in luminosity. Our measurements are in very good agreement with the predictions of the hierarchical galaxy formation models of Benson et al.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号