首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
地球物理   5篇
地质学   1篇
海洋学   1篇
  2024年   1篇
  2017年   2篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
排序方式: 共有7条查询结果,搜索用时 125 毫秒
1
1.
Organized spatial distribution of plants (plant zonation) in salt marshes has been linked to the soil aeration condition in the rhizosphere through simplistic tidal inundation parameters. Here, a soil saturation index (ratio of saturation period to tidal period at a soil depth) is introduced to describe the soil aeration condition. This new index captures the effects of not only the tidal inundation period and frequency but also the flow dynamics of groundwater in the marsh soil. One‐dimensional numerical models based on saturated flow with the Boussinesq approximations and a two‐dimensional variably saturated flow model were developed to explore the behaviour of this new soil aeration variable under the influence of spring‐neap tides. Simulations revealed two characteristic zones of soil aeration across the salt marsh: a relatively well aerated near‐creek zone and a poorly aerated interior zone. In the near‐creek zone, soils undergo periodic wetting and drying as the groundwater table fluctuates throughout the spring‐neap cycle. In the interior, the soil remains largely water saturated except for neap tide periods when limited drainage occurs. Although such a change of soil aeration condition has been observed in previous numerical simulations, the soil saturation index provides a clear delineation of the zones that are separated by an ‘inflexion point’ on the averaged index curve. The results show how the saturation index represents the effects of soil properties, tidal parameters and marsh platform elevation on marsh soil aeration. Simulations of these combined effects have not been possible with traditional tidal inundation parameters. The saturation index can be easily derived using relatively simple models based on five non‐dimensional variables. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
2.
Considering the rapid expansion of urban populations and the corresponding urbanization of landscapes, a dearth of knowledge exists regarding the role of urban vegetation in modulating urban ecosystem functioning. In response to the need for the development of new approaches to quantify ecohydrological processes along urban-to-rural gradients at alternate scales, this study explores the relationship between individual plant selection choices in landscaping and changes in urban hydrological functioning. This research examines differences in the variation of rainfall interception, leaf hydrophobicity, canopy structure, and water storage, between 13 species in an urban, semi-arid location. The species studied were selected based on resident preferences, and hence this research considers the role that urban residents play, through individual choices, in modifying the ecohydrology of an urban watershed. Rainfall interception, canopy surface storage, leaf hydrophobicity, and water droplet retention were significantly different between species. Results indicate that individual choice in plant selection for landscaping may influence urban hydrology.  相似文献   
3.
Low-permeability layer (LPL), formed by natural deposit or artificial reclamation and commonly found below the intertidal zone of coastal groundwater system, can retard the ingress of seawater and contaminants, and shorten the travel time of the land-sourced contaminant to the marine environment compared with a homogenous sandy coastal aquifer. However, there is limited understanding on how an intertidal LPL, a condition occurred in a coastal aquifer at Moreton Bay, Australia, influences the groundwater and contaminant transport across the shallow beach aquifer system. We characterized the aquifer hydrological parameters, monitored the in situ groundwater heads, and constructed a 2-D numerical model to analyses the cross-shore hydrological processes in this stratified system. The calibrated model suggests that in the lower aquifer, the inland-source fresh groundwater flowed horizontally towards the sea, upwelled along the freshwater–saltwater interface, and exited the aquifer at the shore below the LPL. Whereas in the upper aquifer, the tidally driven seawater circulation formed a barrier that prevented fresh groundwater from horizontal transport and discharge to the beach above the LPL, thereby directing its leakage to the lower aquifer. A contaminant represented by a conservative tracer was ‘released’ the upper aquifer in the model and results showed that the spreading extent of the contaminant plume, the maximum rate of contaminant discharge to the ocean, and its plume length decreased compared with a simulation case in a homogenous sandy aquifer. Sensitivity analysis was also conducted to investigate the characteristics of the LPL, including its continuity and hydraulic conductivity, which were found to vary along the beach at Moreton Bay. The result shows that with a lower hydraulic conductivity and continuous layer of LPL reduced the groundwater exchange and contaminant transport between upper and lower aquifer. The findings from the combined field and modelling investigations on the impact of an intertidal LPL on coastal aquifer systems highlight its significant implications to alter the groundwater and mass transport across the land–ocean interface.  相似文献   
4.
Irregular wetting, water repellency, and preferential flow are well‐documented properties of coastal sandy podzols, though little is known about the effect of fire on unsaturated zone processes in this environment. This study investigates water repellency at and below the soil surface in two coastal sandy podzols following bushfire. Water drop penetration time tests were applied to burned and unburned soils at a high dune field site in South East Queensland, Australia. It was found that the mean water drop penetration time of the burned soil was four times that of the unburned soil, but both soils were largely non‐repellent. Post‐fire repellency peaked below the surface in a patchy layer, in contrast to the laterally extensive layer reported in other studies, and high organic matter content in the soil did not appear to significantly influence repellency post‐burn. Non‐parametric statistics were used to quantify the high spatial variability in water repellency, which was ultimately insufficiently captured by atypically large (n = 1000 drop) datasets. This study confirms the presence of naturally occurring repellency and patchy infiltration in sandy soils while demonstrating that conclusively describing the influence of fire is challenging in a soil with heterogeneous infiltration characteristics. With respect to this uncertainty, it appears that fire does not increase soil water repellency such that infiltration and runoff processes due to fire‐induced water repellency would differ post‐burn.  相似文献   
5.
Field measurements presented by [Gibbes, B., Robinson, C., Li, L., Lockington, D.A., Carey, H., 2008. Tidally driven pore water exchange within offshore intertidal sandbanks: Part I Field measurements. Estuarine, Coastal and Shelf Science 79, pp. 121–132.] revealed a tidally driven pore water flow system within an offshore intertidal sandbank in Moreton Bay, Australia. The field data suggested that this flow system might be capable of delivering nutrients, and in particular bio-available iron, across the sediment–water interface. Bio-available iron has been implicated as a key nutrient in the growth of the toxic marine cyanobacteria Lyngbya majuscula and therefore this pore water exchange process is of interest at sites where L. majuscula blooms have been observed. In this study two-dimensional numerical simulations were used in conjunction with hydraulic data from field measurements to further investigate the tidally induced pore water flow patterns. Simulation results generally showed good agreement with the field data and revealed a more complex residual pore water flow system in the sandbank than shown by the field data. The flow system, strongly influenced by the geometry of the sandbank, was characterized by two circulation cells which resulted in pore water discharge at the bank edge and also to a permanently ponded area within the sandbank interior. Simulated discharge volumes in these two zones were in the order of 0.813 m3 and 0.143 m3 per meter width (along shore) of sandbank per tidal cycle at the bank edge and sandbank interior respectively. Transit times of pore water circulating through these cells were found to range from ≈ 17 days to > 60 years with an average time of 780 days. The results suggest that the tidally driven flow systems might provide a mechanism for transport of bio-available iron across the sediment–water interface. This flow could constitute a previously unrecognized source of bio-available iron for L. majuscula blooms in the Bay.  相似文献   
6.
Conservation efforts often neglect the importance of monitoring of protected areas, which is key to adaptively managing dynamic landscapes. In many developing countries, like Trinidad, protected areas are set aside as a result of an agreement with an international conservation organization, often resulting in inadequate planning and monitoring of the protected area. Monitoring of protected areas allows for an examination of the conservation scheme implemented and enables improved conservation decisions to be made. The research presented provides an example of the use of technology in monitoring conservation strategies in two protected wetlands, Caroni and Nariva, in Trinidad. Remote sensing and fragmentation analyses are used to quantify land cover change within these two protected wetlands. Results show that the classification of Caroni immediately identifies a shift towards anthropogenic land cover types, suggesting an increase in human activity within the park. This finding is further supported by the continuous measures used, such as decreases in mean NDVI and greenness values suggesting a decrease in the amount or health of the vegetation. While the classification of Nariva suggests a return to natural land covers, the continuous measures of land cover change indicate the opposite. Land cover change analyses are limited in Trinidad and in the Caribbean in general, partly due to satellite data availability, thus this research presents remote sensing and landscape fragmentation analyses as new tools for monitoring land cover change and conservation effectiveness in Trinidad.  相似文献   
7.
Transport of nonsorbing solutes in a streambed with periodic bedforms   总被引:1,自引:0,他引:1  
Previous studies of hyporheic zone focused largely on the net mass transfer of solutes between stream and streambed. Solute transport within the bed has attracted less attention. In this study, we combined flume experiments and numerical simulations to examine solute transport processes in a streambed with periodic bedforms. Solute originating from the stream was subjected to advective transport driven by pore water circulation due to current–bedform interactions as well as hydrodynamic dispersion in the porous bed. The experimental and numerical results showed that advection played a dominant role at the early stage of solute transport, which took place in the hyporheic zone. Downward solute transfer to the deep ambient flow zone was controlled by transverse dispersion at the later stage when the elapsed time exceeded the advective transport characteristic time tc (= L/uc with L being the bedform length and uc the characteristic pore water velocity). The advection-based pumping exchange model was found to predict reasonably well solute transfer between the overlying water and streambed at the early stage but its performance deteriorated at the later stage. With dispersion neglected, the pumping exchange model underestimated the long-term rate and total mass of solute transfer from the overlying water to the bed. Therefore both advective and dispersive transport components are essential for quantification of hyporheic exchange processes.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号