首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
地球物理   6篇
  2021年   1篇
  2019年   2篇
  2016年   1篇
  2011年   1篇
  2008年   1篇
排序方式: 共有6条查询结果,搜索用时 156 毫秒
1
1.
2.
3.
4.

A very high-resolution modelling configuration was created for the estuary of Baía de Todos os Santos – BTS, Brazil (300 to 400 m), and adjacent coastal waters (600 to 1200 m). The adoption of a multi-corner domain approach allowed the variable spatial resolution required to resolve the shelf, the bay and their interactions. Seven years were simulated using realistic oceanic, atmospheric and riverine forcing. Model validation was done against observations showing the model skill to reproduce the thermohaline field, the tidal currents, as well as the variability of the free surface at tidal and sub-tidal time scales. The results provide the first representation of the tidal wave propagation along the bay, in terms of maps of amplitudes, phases and ellipses of the barotropic currents for the main tidal constituents. By analysing the residual currents at different depths, in terms of averages over the simulation period, several prominent structures were identified and named: (i) Salvador eddy (up to 0.2 m s−1); (ii) St Antonio current (up to 0.45 m s−1); (iii) Salvador current (up to 0.5 m s−1); (iv) Itaparica eddy (up to 0.2 m s−1); (v) Ilha dos Frades southern eddy (up to 0.1 m s−1); and (vi) Ilha dos Frades northern eddy (up to 0.2 m s−1). The model set-up proved to be highly efficient and robust simulating the BTS shelf-estuary region and such an approach may be suitable to other estuarine systems.

  相似文献   
5.
The Camamu Bay (CMB) is located on the narrowest shelf along the South American coastline and close to the formation of two major Western Boundary Currents (WBC), the Brazil/North Brazil Current (BC/NBC). These WBC flow close to the shelf break/slope region and are expected to interact with the shelf currents due to the narrowness of the shelf. The shelf circulation is investigated in terms of current variability based on an original data set covering the 2002-2003 austral summer and the 2003 austral autumn. The Results show that the currents at the shelf are mainly wind driven, experiencing a complete reversal between seasons due to a similar change in the wind field. Currents at the inner-shelf have a polarized nature, with the alongshore velocity mostly driven by forcings at the sub-inertial frequency band and the cross-shore velocity mainly supra-inertially forced, with the tidal currents playing an important role at this direction. The contribution of the forcing mechanisms at the mid-shelf changes between seasons. During the summer, forcings in the two frequency bands are important to drive the currents with a similar contribution of the tidal currents. On the other hand, during the autumn season, the alongshore velocity is mostly driven by sub-inertial forcings and tidally driven currents still remain important in both directions. Moreover, during the autumn when the stratification is weaker, the response of the shelf currents to the wind forcing presents a barotropic signature. The meso-scale processes related to the WBC flowing at the shelf/slope region also affect the circulation within the shelf, which contribute to cause significant current reversals during the autumn season. Currents at the shelf-estuary connection are clearly supra-inertially forced with the tidal currents playing a key role in the generation of the along-channel velocities. The sub-inertial forcings at this location act mainly to drive the weak ebb currents which were highly correlated with both local and remote wind forcing during the summer season.  相似文献   
6.
Ocean Dynamics - Near-inertial oscillations (NIO) are intermittent motions with a frequency close to the inertial frequency and represent an important fraction of the energy to the currents in the...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号