首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   1篇
大气科学   2篇
地球物理   10篇
地质学   9篇
海洋学   2篇
天文学   2篇
自然地理   8篇
  2021年   2篇
  2018年   1篇
  2016年   1篇
  2014年   2篇
  2013年   2篇
  2010年   2篇
  2008年   2篇
  2006年   1篇
  2004年   1篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1994年   2篇
  1992年   3篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1962年   1篇
排序方式: 共有33条查询结果,搜索用时 31 毫秒
1.
An extremely simple CFD tool is used to compare the calm-water drags of a series of hull forms and to define ‘optimized’ monohull ships for which the total (friction+wave) calm-water drag is minimized. The friction drag is estimated using the classical ITTC formula. The wave drag is predicted using the zeroth-order slender-ship approximation. Comparisons of theoretical predictions and experimental measurements for a series of eight hull forms show that—despite the extreme simplicity of the method that is used here to estimate the friction drag and the wave drag—the method is able to rank the drags of a series of hull forms roughly in accordance with experimental measurements. Thus, the method may be used, with appropriate caution, as a practical hull form design and optimization tool. For purposes of illustration, optimized hull forms that have the same displacement and waterplane transverse moment of inertia as the classical Wigley hull, taken as initial hull in the optimization process, are determined for three speeds and for a speed range.  相似文献   
2.
A local-scale model for temperature-dependence of water-retention curves may be applicable to large scales. Consideration of this temperature dependence is important for modeling unsaturated flow and transport in the subsurface in numerous cases. Although significant progress has been made in understanding and modeling this temperature effect, almost all the previous studies have been limited to small scales (on the order of several centimeters). Numerical experiments were used to investigate the possibility of extending a local-scale model for the temperature-dependence of water retention curves to large scales (on the order of meters). Temperature effects on large-scale hydraulic properties are of interest in many practical applications. Numerical experiment results indicate that the local-scale model can indeed be applicable to large-scale problems for special porous media with high air entry values. A typical porous medium of this kind is the porous tuff matrix in the unsaturated zone of Yucca Mountain, Nevada, the proposed geologic disposal site for national high-level nuclear wastes. Whether this finding can approximately hold for general cases needs to be investigated in future studies.  相似文献   
3.
This study delineated spatially and temporally variable runoff generation areas in the Sand Mountain region pasture of North Alabama under natural rainfall conditions, and demonstrated that hydrologic connectivity is important for generating hillslope response when infiltration‐excess (IE) runoff mechanism dominates. Data from six rainfall events (13·7–32·3 mm) on an intensively instrumented pasture hillslope (0·12 ha) were analysed. Analysis of data from surface runoff sensors, tipping bucket rain gauge and HS‐flume demonstrated spatial and temporal variability in runoff generation areas. Results showed that the maximum runoff generation area, which contributed to runoff at the outlet of the hillslope, varied between 67 and 100%. Furthermore, because IE was the main runoff generation mechanism on the hillslope, the data showed that as the rainfall intensity changed during a rainfall event, the runoff generation areas expanded or contracted. During rainfall events with high‐intensity short‐ to medium‐duration, 4–8% of total rainfall was converted to runoff at the outlet. Rainfall events with medium‐ to low‐intensity, medium‐duration were found less likely to generate runoff at the outlet. In situ soil hydraulic conductivity (k) was measured across the hillslope, which confirmed its effect on hydrologic connectivity of runoff generation areas. Combined surface runoff sensor and k‐interpolated data clearly showed that during a rainfall event, lower k areas generate runoff first, and then, depending on rainfall intensity, runoff at the outlet is generated by hydrologically connected areas. It was concluded that in IE‐runoff‐dominated areas, rainfall intensity and k can explain hydrologic response. The study demonstrated that only connected areas of low k values generate surface runoff during high‐intensity rainfall events. Identification of these areas would serve as an important foundation for controlling nonpoint source pollutant transport, especially phosphorus. The best management practices can be developed and implemented to reduce transport of phosphorus from these hydrologically connected areas. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
4.
5.
6.
Summary. The contamination effect when a discrete Fourier analysis is applied to a short length of data in order to estimate the main diurnal (O1) and semi-diurnal (M2) components of the solid body tide is estimated and it is shown that a moderate length of record (30 days) has distinct advantages over larger record lengths of less than 60 days or so.  相似文献   
7.
It is shown that there are MRV-related activities underway in South Africa, particularly focusing on measuring electricity consumption and monitoring GHG emissions. Yet currently many of these activities happen in parallel systems within multi-polar governance structures. A bottom-up perspective of MRV in South Africa, informed by interviews, workshops, desktop research, and stakeholder consultations, is provided and the systems, data, methodologies, and the institutional environment relevant to a South African MRV system are examined. The development of the local monitoring and evaluation system, and its relevance within the international MRV context, is also discussed. Some recommendations are made: most importantly, there is a need for a coherent approach to be developed, one that is coordinated by government and built on existing MRV systems.  相似文献   
8.
This study proposes an innovative passive vibration mitigation device employing essentially nonlinear elastomeric springs as its most critical component. Essential nonlinearity denotes the absence (or near absence) of a linear component in the stiffness characteristics of these elastomeric springs. These devices were implemented and tested on a large‐scale nine‐story model building structure. The main focus of these devices is to mitigate structural response under impulse‐like and seismic loading when the structure remains elastic. During the design process of the device, numerical simulations, optimizations, and parametric studies of the structure‐device system were performed to obtain stiffness parameters for the devices so that they can maximize the apparent damping of the fundamental mode of the structure. Pyramidal elastomeric springs were employed to physically realize the optimized essentially nonlinear spring components. Component‐level finite element analyses and experiments were conducted to design the nonlinear springs. Finally, shake table tests using impulse‐like and seismic excitation with different loading levels were performed to experimentally evaluate the performance of the device. Experimental results demonstrate that the properly designed devices can mitigate structural vibration responses, including floor acceleration, displacement, and column strain in an effective, rapid, and robust fashion. Comparison between numerical and experimental results verified the computational model of the nonlinear system and provided a comprehensive verification for the proposed device. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号