首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   2篇
测绘学   2篇
大气科学   4篇
地球物理   20篇
地质学   40篇
海洋学   10篇
天文学   7篇
综合类   1篇
自然地理   22篇
  2022年   1篇
  2021年   2篇
  2018年   4篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2014年   3篇
  2013年   12篇
  2012年   3篇
  2011年   6篇
  2010年   9篇
  2009年   3篇
  2008年   9篇
  2007年   3篇
  2006年   5篇
  2005年   1篇
  2004年   4篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1994年   3篇
  1988年   1篇
  1987年   3篇
  1985年   1篇
  1982年   2篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
  1968年   1篇
  1967年   1篇
  1965年   1篇
排序方式: 共有106条查询结果,搜索用时 46 毫秒
1.
The 40Ar/39Ar geochronological method was applied to date magmatic and hydrothermal alteration events in the Mantos Blancos mining district in the Coastal Cordillera of northern Chile, allowing the distinction of two separate mineralization events. The Late Jurassic Mantos Blancos orebody, hosted in Jurassic volcanic rocks, is a magmatic-hydrothermal breccia-style Cu deposit. Two superimposed mineralization events have been recently proposed. The first event is accompanied by a phyllic hydrothermal alteration affecting a rhyolitic dome. The second mineralization event is related to the intrusion of bimodal stocks and sills inside the deposit. Because of the superposition of several magmatic and hydrothermal events, the obtained 40Ar/39Ar age data are complex; however, with a careful interpretation of the age spectra, it is possible to detect complex histories of successive emplacement, alteration, mineralization, and thermal resetting. The extrusion of Jurassic basic to intermediate volcanic rocks of the La Negra Formation is dated at 156.3 ± 1.4 Ma (2σ) using plagioclase from an andesitic lava flow. The first mineralization event and associated phyllic alteration affecting the rhyolitic dome occurred around 155–156 Ma. A younger bimodal intrusive event, supposed to be equivalent to the bimodal stock and sill system inside the deposit, is probably responsible for the second mineralization event dated at ca. 142 Ma. Other low-temperature alteration events have been dated on sericitized plagioclase at ca. 145–146, 125, and 101 Ma. This is the first time that two distinct mineralization events have been documented from radiometric data for a copper deposit in the metallogenic belt of the Coastal Cordillera of northern Chile. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
2.
Establishing the petrogenesis of volcanic and plutonic rocksis a key issue in unraveling the evolution of distinct subduction-relatedtectonic phases occurring along the South American margin. Thisis particularly true for Cenozoic times when large volumes ofmagma were produced in the Andean belt. In this study we havefocused on Oligo-Miocene magmatism in central Chile at 33°S.Our data include field and petrographic observations, whole-rockmajor and trace element analyses, U–Pb zircon dating,and Pb, Sr, and Hf isotope analyses of plagioclase, clinopyroxene,and zircon mineral separates. Combined with earlier dating resultsthe new zircon ages define a 28·8–5·2 Maperiod of plutonic and volcanic activity that ceased as a consequenceof flattening subduction of the Nazca–Farallon plate.Rare earth elements patterns are variable, with up to 92 timeschondrite concentrations for light rare earth elements yielding(La/Yb)N between 3·6 and 7·0, and an absence ofEu anomalies. Initial Pb isotope signatures are in the rangeof 18·358–19·023 for 206Pb/ 204Pb, 15·567–15·700for 207Pb/ 204Pb and 38·249–39·084 for 208Pb/204Pb. Initial 87Sr/ 86Sr are mostly in the range of 0·70369–0·70505,with two more radiogenic values at 0·7066. Initial Hfisotopic compositions of zircons yield exclusively positiveHfi ranging between + 6·9 and + 9·6. The newlydetermined initial isotope characteristics of the Oligo-Miocenemagmas suggest that the mantle source lithologies are differentfrom both those of Pacific mid-ocean ridge basalt and oceanisland basalt, plotting in the field of reference values forsubcontinental lithospheric mantle, characterized by moderatelarge ion lithophile element–high field strengh elementdepletion and high 238U/ 204Pb. A Hf model age of 2 Ga is estimatedfor the formation of the subcontinental mantle–continentalcrust assemblage in the region, suggesting that the initialSr and Pb isotope ratios inferred for the source of the Oligo-Mioceneparental magmas are the result of later Rb and U enrichmentcaused by mantle metasomatism. A time-integrated model Rb/Srof 0·039 and µ 16 are estimated for the sourceof the parental magmas, consistent with ratios measured in peridotitexenoliths from continental areas. Evolution from predominant(>90%) basaltic–gabbroic to andesitic–dioriticmagmas seems to involve a combination of (1) original traceelement differences in the metasomatized subcontinental mantle,(2) different degrees of partial melting and (3) fractionalcrystallization in the garnet- and spinel-peridotite stabilityfields. The genesis of more differentiated magmas reaching rhyolitic–graniticcompositions most probably also includes additional crystalfractionation at both shallow mantle depths and within the crust,possibly leading to some very minor assimilation of crustalmaterial. KEY WORDS: calc-alkaline magmatism; Oligo-Miocene; U–Pb dating; Sr–Pb–Hf isotopes; central Chile  相似文献   
3.
Several years of continuous physical and biological anomalies have been affecting the Bering Sea shelf ecosystem starting from 1997. Such anomalies reached their peak in a striking visual phenomenon: the first appearance in the area of bright waters caused by massive blooms of the coccolithophore Emiliania huxleyi (E. huxleyi). This study is intended to provide an insight into the mechanisms of phytoplankton succession in the south-eastern part of the shelf during such years and addresses the causes of E. huxleyi success by means of a 2-layer ecosystem model, field data and satellite-derived information. A number of potential hypotheses are delineated based on observations conducted in the area and on previous knowledge of E. huxleyi general ecology. Some of these hypotheses are then considered as causative factors and explored with the model. The unusual climatic conditions of 1997 resulted most notably in a particularly shallow mixed layer depth and high sea surface temperature (about 4 °C above climatological mean). Despite the fact that the model could not reproduce for E. huxleyi a clear non-bloom to bloom transition (pre- vs. post-1997), several tests suggest that this species was favoured by the shallow mixed layer depth in conjunction with a lack of photoinhibition. A top-down control by microzooplankton selectively grazing phytoplankton other than E. huxleyi appears to be responsible for the long persistence of the blooms. Interestingly, observations reveal that the high N:P ratio hypothesis, regarded as crucial in the formation of blooms of this species in previous studies, does not hold on the Bering Sea shelf.  相似文献   
4.
To determine if defoliation of a woody plant affects foraging by folivorous insects, we examined the infection rate (number of leaves damaged per total number of leaves sampled on marked stems) ofAnthyllis cytisoidesunder three experimental treatments: 10, 50 and 90% plant defoliation. Observations were made for three age classes, established by trunk base perimeter (equal to or lower than 11 cm, between 11 and 20 cm, larger than 20 cm). Plants respond positively to artificial defoliation by increasing total vegetative length of the stem and total inflorescence length. This response is most evident in young individuals.Response to herbivory was measured as overall infection rate and also as infection rate by different feeding guilds—chewing, mining, or sucking insects. We found that increased defoliation elicited increased resistance of leaves to insect attack. This was particularly evident in young plants. Different insect guilds respond in different ways. Attack by chewing insects declines with defoliation for all plant age classes; only sucking insects which feed on the oldest plants reduce feeding rate with plant defoliation. Finally, mining insects present the opposite trend in young and senescent plants.  相似文献   
5.
Hydrologic precursors to earthquakes: A review   总被引:4,自引:0,他引:4  
This review summarizes reports of anomalous flow rates or pressures of groundwater, oil, or gas that have been interpreted as earthquake precursors. Both increases and decreases of pressure and flow rate have been observed, at distances up to several hundred kilometers from the earthquake epicenter, with precursor times ranging from less than one day to more than one year. Although information that might rule out nontectonic causes does not appear in many published accounts of hydrologic anomalies, several recent studies have critically evaluated the possible influences of barometric pressure, rainfall, and groundwater or oil exploitation. Anomalies preceding the 1976 Tangshan, China, and the 1978 Izu-Oshima-Kinkai, Japan, earthquakes are especially well-documented and worthy of further examination.Among hydrologic precursors, pressure head changes in confined subsurface reservoirs are those most amenable to quantitative interpretation in terms of crustal strain. The response of pressure head to earth tides determines coefficients of proportionality between pressure head and crustal strain. The same coefficients of proportionality should govern the fluid pressure response to any crustal strain field in which fluid flow in the reservoir is unimportant. Water level changes in response to independently recorded tectonic events, such as earthquakes and aseismic fault creep, provide evidence that a calibration based on response to earth tides may be applied to crustal strains of tectonic origin.Several models of earthquake generation predict accelerating stable slip on part of the future rupture plane. If precursory slip has moment less than or equal to that of the impending earthquake, then the coseismic volume strain is an upper bound for precursory volume strain. Although crustal strain can be only crudely estimated from most reported pressure head anomalies, the sizes of many anomalies within 150 kilometers of earthquake epicenters appear consistent with this upper bound. In contrast, water level anomalies at greater epicentral distances appear to be larger than this bound by several orders of magnitude.It is clear that water level monitoring can yield information about the earthquake generation process, but progress higes on better documentation of the data.  相似文献   
6.
Partial spilitization of a 9 km thick pile of flood basalts with highly vesicular flow tops gave rise to patterns of secondary mineralogy at different scales: (a) a local pattern of mineralogical variation from the almost unaltered bottom towards the altered top of each flow, and (b) an overall pattern, comparing flow tops throughout the pile, with changes in mineralogical composition within a sequence of metamorphic zones and facies. The local patterns mimic the trend of the overall pattern, but are of opposite direction and telescoped. Thus, a gradual ordering and Andepletion of the secondary albite and increases in the Fe*/Al ratio of epidote and pumpellyite upwards within individual flows are comparable in range to corresponding overall changes downwards throughout several kilometres. The mineralogical changes within the flows diminish in range towards the more altered deeper part of the pile.The local and overall patterns cannot be interpreted in terms of grade. They represent trends from metastable towards stable equilibrium, this latter only approached in the flow tops of the lower part of the pile. The patterns of secondary mineralogy were formed by an interplay of metamorphic gradients at different scales at any given time, and as burial proceeded. The overall pattern was caused by depth-controlled gradients: increasing P fluid, temperature and temperature-induced increase of reaction rates, and decreasing fO2 (downwards in the pile). The local patterns resulted from permeability-controlled gradients: increasing reaction rates, fO2 and contrast in chemical activity between different domains, and decreasing P fluid (upwards in each flow). The mineralogical observations reported in this paper fall into line if the overall temperature-induced increase of reaction rates and the local permeability-controlled rate factors played the leading role during burial metamorphism of the pile.  相似文献   
7.
The distribution of δ13C values for organic seston and sediment was determined in three sounds in the Spartina marsh estuaries along the Georgia coast, which had high, moderate, and low inputs of freshwater. Organic matter in all three sounds had similar carbon isotope compositions, for the most part within the range of marine values (δ13C of ?18%. to ?24%.). It appears that river flow does not introduce significant quantities of particulate C3 plant material (δ13C of ?25%. to ?28%.) to Georgia estuaries. Evaluation of δ13C values of estuarine seston and three size fractions of sediment indicated that while Spartina carbon (δ13C of ?13%.) can be an important component of organic matter in intertidal sediments (mean δ13C of ?14.3%. to ?20.0%.), it is less so in subtidal sediments (mean δ13C of ?18.8%. to ?21.2%.), and it is hardly present at all in the seston (mean δ13C of ?24.5%.). δ13C values of dissolved inorganic carbon (DIC) in several water samples ranged between ?2.5%. and ?5.6%., suggesting that the isotope composition of estuarine DIC is influenced by respiratory CO2 derived from metabolism of 13C-depleted plant carbon. Phytoplankton production utilizing this comparatively light DIC could be a source of relatively negative δ13C carbon in the estuary. Additional origins of estuarine organic matter greatly depleted in 13C compared to Spartina carbon remain to be identified.  相似文献   
8.
Spectroradiometers using photodiode array detectors (PDAs) are increasingly applied for airborne and ground-based atmospheric measurements of spectral actinic flux densities due to their high time resolution (less than one second). However they have limited sensitivity of ultraviolet (UV) radiation for wavelengths less than about 305 nm. This results in uncertainties of ozone photolysis frequencies derived from spectral actinic flux density measurements using PDA spectrometers. To overcome this limitation a parameterization method is introduced which extrapolates the data towards the wavelength range of limited sensitivity of the PDA spectrometers (less than about 305 nm). The parameterization is based on radiative transfer simulations and is valid for measurements in the lower troposphere. The components of the suggested parameterization are the lower threshold wavelength of the PDA spectrometer, the slant ozone column (ratio of the total ozone column and the cosine of the solar zenith angle), and the ambient temperature. Tests of the parameterization with simulated actinic flux density spectra have revealed an uncertainty of the derived ozone photolysis frequency of ±5%. Field comparisons of the parameterization results with independent measurements of the ozone photolysis frequency were within ±10% for solar zenith angles less than 70^∘. Finally the parameterization was applied to airborne measurements to emphasize the advantage of high time resolution of PDA spectrometers to study ozone photolysis frequency fields in inhomogeneous cloud condtitions.  相似文献   
9.
The Jurassic to Miocene sequences of the central Andes, east of Santiago, reputedly show repeated cycles of episodic sub-greenschist facies, burial metamorphism that are identified by sharp breaks in metamorphic grade at major stratigraphic boundaries. This paper presents the first detailed petrochemical analysis of these low-grade metamorphic sequences by examining the progressive development of secondary minerals, reaction progress in mafic phyllosilicates, and topological variations in the low-grade assemblages as a means of testing this model. The results indicate a progressive increase from zeolite facies through to close to the onset of greenschist facies from Miocene to Jurassic rocks. Combined analysis of reaction progress in mafic phyllosilicates and petrochemical relationships of chlorite–pumpellyite–actinolite in metabasites provides no evidence for sharp metamorphic breaks at major stratigraphic boundaries. Integrating the results presented here with the most recent models of stratigraphic/tectonic development of the central Andes shows that the metamorphism took place in two episodes, and was not episodic on a 40-million-year cycle. An absence of sharp breaks in metamorphic grade in any part of the succession, as demonstrated here, shows that the original petrographic establishment of low-grade facies provided insufficient resolution of changes in metamorphic conditions to establish definitive evidence of such breaks. Accordingly, this study suggests that re-assessment of metamorphic breaks reputedly developed in other areas of the Andean Cordillera is imperative in order to resolve the questions raised here about the origin of the low-grade metamorphism.Editorial responsibility: B. Collins  相似文献   
10.
We report new nitrogen and argon isotope and abundance results for single breccia clasts and agglutinates from four different sections of the Luna 24 drill core in order to re-evaluate the provenance of N trapped in lunar regolith, and to place limits on the flux of planetary material to the Moon’s surface. Single Luna 24 grains with 40Ar/36Ar ratios <1 show δ15N values between ?54.5‰ and +123.3‰ relative to terrestrial atmosphere. Thus, low-antiquity lunar soils record both positive and negative δ15N signatures, and the secular increase of the δ15N value previously postulated by Kerridge (Kerridge, J.F. [1975]. Science 188(4184), 162–164. doi:10.1126/science.188.4184.162) is no longer apparent when the Luna and Apollo data are combined. Instead, the N isotope signatures, corrected for cosmogenic 15N, are consistent with binary mixing between isotopically light solar wind (SW) N and a planetary N component with a δ15N value of +100‰ to +160‰. The lower δ15N values of Luna 24 grains compared to Apollo samples reflect a higher relative proportion of solar N, resulting from the higher SW fluence in the region of Mare Crisium compared to the central near side of the Moon. Carbonaceous chondrite-like micro-impactors match well the required isotope characteristics of the non-solar N component trapped in low-antiquity lunar regolith. In contrast, a possible cometary contribution to the non-solar N flux is constrained to be ?3–13%. Based on the mixing ratio of SW to planetary N obtained for recently exposed lunar soils, we estimate the flux of micro-impactors to be (2.2–5.7) × 103 tons yr?1 at the surface of the Moon. Our estimate for Luna 24 agrees well with that for young Apollo regolith, indicating that the supply of planetary material does not depend on lunar location. Thus, the continuous influx of water-bearing cosmic dust may have represented an important source of water for the lunar surface over the past ~1 Ga, provided that water removal rates (i.e., by meteorite impacts, photodissociation, and sputtering) do not exceed accumulation rates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号