首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   4篇
测绘学   1篇
大气科学   8篇
地球物理   22篇
地质学   1篇
  2023年   1篇
  2021年   1篇
  2020年   1篇
  2017年   1篇
  2016年   5篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1996年   1篇
排序方式: 共有32条查询结果,搜索用时 250 毫秒
1.
2.
Simulation of soil moisture content requires effective soil hydraulic parameters that are valid at the modelling scale. This study investigates how these parameters can be estimated by inverse modelling using soil moisture measurements at 25 locations at three different depths (at the surface, at 30 and 60 cm depth) on an 80 by 20 m hillslope. The study presents two global sensitivity analyses to investigate the sensitivity in simulated soil moisture content of the different hydraulic parameters used in a one‐dimensional unsaturated zone model based on Richards' equation. For estimation of the effective parameters the shuffled complex evolution algorithm is applied. These estimated parameters are compared to their measured laboratory and in situ equivalents. Soil hydraulic functions were estimated in the laboratory on 100 cm3 undisturbed soil cores collected at 115 locations situated in two horizons in three profile pits along the hillslope. Furthermore, in situ field saturated hydraulic conductivity was estimated at 120 locations using single‐ring pressure infiltrometer measurements. The sensitivity analysis of 13 soil physical parameters (saturated hydraulic conductivity (Ks), saturated moisture content (θs), residual moisture content (θr), inverse of the air‐entry value (α), van Genuchten shape parameter (n), Averjanov shape parameter (N) for both horizons, and depth (d) from surface to B horizon) in a two‐layer single column model showed that the parameter N is the least sensitive parameter. Ks of both horizons, θs of the A horizon and d were found to be the most sensitive parameters. Distributions over all locations of the effective parameters and the distributions of the estimated soil physical parameters from the undisturbed soil samples and the single‐ring pressure infiltrometer estimates were found significantly different at a 5% level for all parameters except for α of the A horizon and Ks and θs of the B horizon. Different reasons are discussed to explain these large differences. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
3.
4.
Temporal and spatial rainfall patterns were analysed to describe the distribution of daily rainfall across a medium‐sized (379km2) tropical catchment. Investigations were carried out to assess whether a climatological variogram model was appropriate for mapping rainfall taking into consideration the changing rainfall characteristics through the wet season. Exploratory, frequency and moving average analyses of 30 years' daily precipitation data were used to describe the reliability and structure of the rainfall regime. Four phases in the wet season were distinguished, with the peak period (mid‐August to mid‐September) representing the wettest period. A low‐cost rain gauge network of 36 plastic gauges with overflow reservoirs was installed and monitored to obtain spatially distributed rainfall data. Geostatistical techniques were used to develop global and wet season phase climatological variograms. The unscaled climatological variograms were cross‐validated and compared using a range of rainfall events. Ordinary Kriging was used as the interpolation method. The global climatological variogram performed better, and was used to optimize the number and location of rain gauges in the network. The research showed that although distinct wet season phases could be established based on the temporal analysis of daily rainfall characteristics, the interpolation of daily rainfall across a medium‐sized catchment based on spatial analysis was better served by using the global rather than the wet season phase climatological variogram model. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
5.
Flood hazard maps at trans‐national scale have potential for a large number of applications ranging from climate change studies, reinsurance products, aid to emergency operations for major flood crisis, among others. However, at continental scales, only few products are available, due to the difficulty of retrieving large consistent data sets. Moreover, these are produced at relatively coarse grid resolution, which limits their applications to qualitative assessments. At finer resolution, maps are often limited to country boundaries, due to limited data sharing at trans‐national level. The creation of a European flood hazard map would currently imply a collection of scattered regional maps, often lacking mutual consistency due to the variety of adopted approaches and quality of the underlying input data. In this work, we derive a pan‐European flood hazard map at 100 m resolution. The proposed approach is based on expanding a literature cascade model through a physically based approach. A combination of distributed hydrological and hydraulic models was set up for the European domain. Then, an observed meteorological data set is used to derive a long‐term streamflow simulation and subsequently coherent design flood hydrographs for a return period of 100 years along the pan‐European river network. Flood hydrographs are used to simulate areas at risk of flooding and output maps are merged into a pan‐European flood hazard map. The quality of this map is evaluated for selected areas in Germany and United Kingdom against national/regional hazard maps. Despite inherent limitations and model resolution issues, simulated maps are in good agreement with reference maps (hit rate between 59% and 78%, critical success index between 43% and 65%), suggesting strong potential for a number of applications at the European scale. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
6.
Andosol soils formed in volcanic ash provide key hydrological services in montane environments. To unravel the subsurface water transport and tracer mixing in these soils we conducted a detailed characterization of soil properties and analyzed a 3-year data set of sub-hourly hydrometric and weekly stable isotope data collected at three locations along a steep hillslope. A weakly developed (52–61 cm depth), highly organic andic (Ah) horizon overlaying a mineral (C) horizon was identified, both showing relatively similar properties and subsurface flow dynamics along the hillslope. Soil moisture observations in the Ah horizon showed a fast responding (few hours) “rooted” layer to a depth of 15 cm, overlying a “perched” layer that remained near saturated year-round. The formation of the latter results from the high organic matter (33–42%) and clay (29–31%) content of the Ah horizon and an abrupt hydraulic conductivity reduction in this layer with respect to the rooted layer above. Isotopic signatures revealed that water resides within this soil horizon for short periods, both at the rooted (2 weeks) and perched (4 weeks) layer. A fast soil moisture reaction during rainfall events was also observed in the C horizon, with response times similar to those in the rooted layer. These results indicate that despite the perched layer, which helps sustain the water storage of the soil, a fast vertical mobilization of water through the entire soil profile occurs during rainfall events. The latter being the result of the fast transmissivity of hydraulic potentials through the porous matrix of the Andosols, as evidenced by the exponential shape of the water retention curves of the subsequent horizons. These findings demonstrate that the hydrological behavior of volcanic ash soils resembles that of a “layered sponge,” in which vertical flow paths dominate.  相似文献   
7.
8.
9.
Despite the importance of mountain ranges as water providers, knowledge of their climate variability is still limited, mostly due to a combination of data scarcity and heterogeneous orography. The tropical Andes share many of the main features of mountain ranges in general, and are subject to several climatic influences that have an effect on rainfall variability. Although studies have addressed the large-scale variation, the basin scale has received little attention. Thus, the purpose of this study was to obtain a better understanding of rainfall variability in the tropical Andes at the basin scal, utilizing the Paute River basin of southern Ecuador as a case study. Analysis of 23 rainfall stations revealed a high spatial variability in terms of: (i) large variations of mean annual precipitation in the range 660–3400 mm; (ii) the presence of a non-monotonic relation between annual precipitation and elevation; and (iii) the existence of four, sometimes contrasting, rainfall regimes. Data from seven stations for the period 1964–1998 was used to study seasonality and trends in annual, seasonal and monthly precipitation. Seasonality is less pronounced at higher elevations, confirming that in the páramo region, the main water source for Andean basins, rainfall is well distributed year round. Additionally, during the period of record, no station has experienced extreme concentrations of annual rainfall during the wet season, which supports the concept of mountains as reliable water providers. Although no regional or basin-wide trends are found for annual precipitation, positive (negative) trends during the wet (dry) season found at four stations raises the likelihood of both water shortages and the risk of precipitation-triggered disasters. The study demonstrates how variable the precipitation patterns of the Andean mountain range are, and illustrates the need for improved monitoring. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
10.
As a consequence of the remote location of the Andean páramo, knowledge on their hydrologic functioning is limited; notwithstanding, these alpine tundra ecosystems act as water towers for a large fraction of the society. Given the harsh environmental conditions in this region, year‐round monitoring is cumbersome, and it would be beneficial if the monitoring needed for the understanding of the rainfall–runoff response could be limited in time. To identify the hydrological response and the effect of temporal monitoring, a nested (n = 7) hydrological monitoring network was set up in the Zhurucay catchment (7.53 km2), south Ecuador. The research questions were as follows: (1) Can event sampling provide similar information in comparison with continuous monitoring, and (2) if so, how many events are needed to achieve a similar degree of information? A subset of 34 rainfall–runoff events was compared with monthly values derived from a continuous monitoring scheme from December 2010 to November 2013. Land cover and physiographic characteristics were correlated with 11 hydrological indices. Results show that despite some distinct differences between event and continuous sampling, both data sets reveal similar information; more in particular, the monitoring of a single event in the rainy season provides the same information as continuous monitoring, while during the dry season, ten events ought to be monitored. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号