首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
地球物理   2篇
地质学   2篇
  2010年   1篇
  2002年   1篇
  2000年   2篇
排序方式: 共有4条查询结果,搜索用时 265 毫秒
1
1.
An investigation of the rock magnetic properties using stepwise isothermal remanence (IRM) acquisition, thermomagnetic analysis and temperature-dependent susceptibility history, identifies magnetite as the carrier of the main fraction of the remanence, associated with maghemite and hematite in Malan loess (L1), Holocene soil (S0) and last-glacial paleosol (S1). The presence of short-lived direction fluctuations indicates that no significant smoothing occurs in L1 when its remanence is locked, and thus L1 is capable of recording the geomagnetic secular variation (PSV), while the PSV has been severely smoothed or wiped out by pedogenic processes during S1 formation. It has been suggested that the Mono Lake and Laschamp excursions are two independent geomagnetic events based on this study.  相似文献   
2.

There are six distinct classes of gold deposits, each represented by metallogenic provinces, having 100's to >1000 tonne gold production. The deposit classes are: (1) orogenic gold; (2) Carlin and Carlin-like gold deposits; (3) epithermal gold-silver deposits; (4) copper-gold porphyry deposits; (5) iron-oxide copper-gold deposits; and (6) gold-rich volcanic hosted massive sulfide (VMS) to sedimentary exhalative (SEDEX) deposits. This classification is based on ore and alteration mineral assemblages; ore and alteration metal budgets; ore fluid pressure(s) and compositions; crustal depth or depth ranges of formation; relationship to structures and/or magmatic intrusions at a variety of scales; and relationship to the P-T-t evolution of the host terrane. These classes reflect distinct geodynamic settings. Orogenic gold deposits are generated at mid-crustal (4–16 km) levels proximal to terrane boundaries, in transpressional subduction-accretion complexes of Cordilleran style orogenic belts; other orogenic gold provinces form inboard, by delamination of mantle lithosphere, or plume impingement. Carlin and Carlin-like gold deposits develop at shallow crustal levels (<4 km) in extensional convergent margin continental arcs or back arcs; some provinces may involve asthenosphere plume impingement on the base of the lithosphere. Epithermal gold and copper-gold porphyry deposits are sited at shallow crustal levels in continental margin or intraoceanic arcs. Iron oxide copper-gold deposits form at mid to shallow crustal levels; they are associated with extensional intracratonic anorogenic magmatism. Proterozoic examples are sited at the transition from thick refractory Archean mantle lithosphere to thinner Proterozoic mantle lithosphere. Gold-rich VMS deposits are hydrothermal accumulations on or near the seafloor in continental or intraoceanic back arcs.

The compressional tectonics of orogenic gold deposits is generated by terrane accretion; high heat flow stems from crustal thickening, delamination of overthickened mantle lithosphere inducing advection of hot asthenosphere, or asthenosphere plume impingement. Ore fluids advect at lithostatic pressures. The extensional settings of Carlin, epithermal, and copper-gold porphyry deposits result from slab rollback driven by negative buoyancy of the subducting plate, and associated induced convection in asthenosphere below the over-riding lithospheric plate. Extension thins the lithosphere, advecting asthenosphere heat, promotes advection of mantle lithosphere and crustal magmas to shallow crustal levels, and enhances hydraulic conductivity. Siting of some copper-gold porphyry deposits is controlled by arc parallel or orthogonal structures that in turn reflect deflections or windows in the slab. Ore fluids in Carlin and epithermal deposits were at near hydrostatic pressures, with unconstrained magmatic fluid input, whereas ore fluids generating porphyry copper-gold deposits were initially magmatic and lithostatic, evolving to hydrostatic pressures. Fertilization of previously depleted sub-arc mantle lithosphere by fluids or melts from the subducting plate, or incompatible element enriched asthenosphere plumes, is likely a factor in generation of these gold deposits. Iron oxide copper-gold deposits involve prior fertilization of Archean mantle lithosphere by incompatible element enriched asthenospheric plume liquids, and subsequent intracontinental anorogenic magmatism driven by decompressional extension from far-field plate forces. Halogen rich mantle lithosphere and crustal magmas likely are the causative intrusions for the deposits, with a deep crustal proximal to shallow crustal distal association. Gold-rich VMS deposits develop in extensional geodynamic settings, where thinned lithosphere extension drives high heat flow and enhanced hydraulic conductivity, as for epithermal deposits. Ore fluids induced hydrostatic convection of modified seawater, with unconstrained magmatic input. Some gold-rich VMS deposits with an epithermal metal budget may be submarine counterparts of terrestrial epithermal gold deposits. Real time analogs for all of these gold deposit classes are known in the geodynamic settings described, excepting iron oxide copper-gold deposits.

  相似文献   
3.
Whole-rock geochemical and radiogenic data are combined with in situ trace and isotopic analyses of amphibole grains to characterize the source and the emplacement mechanisms of the magmas of the Sunda arc in the Batu Hijau district, Sumbawa, Indonesia. The low-K calc-alkaline magmatic suite in the area is characterized by a distinctively juvenile signature (143Nd/144Nd ~0.5130). Whole-rock trace element and Pb isotopic data (207Pb/204Pb ~15.603) suggest the involvement of a minimal (<0.1%) sediment component in arc petrogenesis. During the petrogenesis of the calc-alkaline plutons, the involvement of fluids that were not entirely derived from the dehydration of a subducting slab is reflected in the mineral chemistry of the primary hydrous magmatic amphiboles, which contain very low B and Li concentrations. We argue that the B- and Li-poor fluids implicated in the petrogenesis of the calc-alkaline melts were at least partially derived from dehydration of uprising asthenospheric mantle. The δD values of selected hydrous magmatic amphibole grains range between ca. −70‰ and 0‰, consistent with an original mantle-derived signature, which was subsequently modified due to a de-hydrogenation process. We put forward the hypothesis that in the Batu Hijau district an arc-transverse fault system facilitated the rise of asthenosphere-derived melts above a kink, or tear, in the subducting Indian Ocean Plate that underlies the Sunda arc. The melts ascended to upper-crustal levels and underwent fractionation while interacting with the arc crust or metasomatized lithospheric mantle wedge. As a result of this study, we emphasize the significance of crustal-scale faults as conduits that connect the mantle to upper-crustal levels in arc settings. The de-hydrogenation process that the tonalite plutons underwent in the Batu Hijau district may have been crucial to the genesis of associated Cu–Au porphyry mineralization and the development of the Pliocene Batu Hijau deposit. Consequently, we argue that deep structures may facilitate the efficient release of mineralizing fluids at high crustal-levels.  相似文献   
4.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号