首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   0篇
  国内免费   1篇
大气科学   1篇
地球物理   5篇
地质学   1篇
海洋学   10篇
天文学   16篇
自然地理   5篇
  2019年   3篇
  2018年   1篇
  2016年   1篇
  2013年   2篇
  2012年   3篇
  2011年   4篇
  2010年   3篇
  2009年   5篇
  2007年   4篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1985年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有38条查询结果,搜索用时 20 毫秒
1.
The undulating, warped, and densely fractured surfaces of highland regions east of Valles Marineris (located north of the eastern Aureum Chaos, east of the Hydraotes Chaos, and south of the Hydaspis Chaos) resulted from extensional surface warping related to ground subsidence, caused when pressurized water confined in subterranean caverns was released to the surface. Water emanations formed crater lakes and resulted in channeling episodes involved in the excavation of Ares, Tiu, and Simud Valles of the eastern part of the circum-Chryse outflow channel system. Progressive surface subsidence and associated reduction of the subsurface cavernous volume, and/or episodes of magmatic-driven activity, led to increases of the hydrostatic pressure, resulting in reactivation of both catastrophic and non-catastrophic outflow activity. Ancient cratered highland and basin materials that underwent large-scale subsidence grade into densely fractured terrains. Collapse of rock materials in these regions resulted in the formation of chaotic terrains, which occur in and near the headwaters of the eastern circum-Chryse outflow channels. The deepest chaotic terrain in the Hydaspis Chaos region resulted from the collapse of pre-existing outflow channel floors. The release of volatiles and related collapse may have included water emanations not necessarily linked to catastrophic outflow. Basal warming related to dike intrusions, thermokarst activity involving wet sediments and/or dissected ice-enriched country rock, permafrost exposed to the atmosphere by extensional tectonism and channel incision, and/or the injection of water into porous floor material, may have enhanced outflow channel floor instability and subsequent collapse. In addition to the possible genetic linkage to outflow channel development dating back to at least the Late Noachian, clear disruption of impact craters with pristine ejecta blankets and rims, as well as preservation of fine tectonic fabrics, suggest that plateau subsidence and chaos formation may have continued well into the Amazonian Period. The geologic and paleohydrologic histories presented here have important implications, as new mechanisms for outflow channel formation and other fluvial activity are described, and new reactivation mechanisms are proposed for the origin of chaotic terrain as contributors to flooding. Detailed geomorphic analysis indicates that subterranean caverns may have been exposed during chaos formation, and thus chaotic terrains mark prime locations for future geologic, hydrologic, and possible astrobiologic exploration.  相似文献   
2.
Abstract— We propose the Sirente crater field to be the first discovered impact craters in Italy. They are located in the Sirente plain within the mountains of the Abruzzo region, central Italy. The craters are distributed in a field 450 m long and 400 m wide. This field consists of ?17 smaller craters close to a larger main crater. The main crater is located in the southern end of the crater field and is 140 m long and 115 m wide, measured rim‐to‐rim. It has a well‐developed, saddle‐shaped rim that rises at a maximum 2.2 m above the surrounding plain. Radiocarbon dating of the target surface preserved below the rim gave a calibrated age of formation at about a.d. 412 (1650 ± 40 radiocarbon years b.p.). This young age is consistent with the apparent little modification of the rim. The morphology of the main crater and its relation to a crater field strongly points to its origin by impact from a projectile that broke up during its passage through the atmosphere. Quartz is very rare in the target and no planar deformation features have been found so far. The rim material and the upper 4 m of the main crater infill are impregnated with ferric oxides, which gives a more reddish colour compared to the other sediments of the plain. Rusty crusts with high Fe and Mn content occur in the rim material, but have not been found in the plain's sediments. Some of these crusts can be separated by magnet, and have sporadic micron‐sized Ni‐rich granules. The main crater is in the size range of the craters with explosive dispersion of the projectile and has many features comparable to both large experimental and meteoritic impact craters formed in loose sediments. We suggest that this crater represents a rare example of well‐preserved, small impact crater formed in unconsolidated target materials.  相似文献   
3.
Series of numerical experiments are performed using a general circulation model to gain insights on the hydrologic cycle on ancient Mars. Since the state of the ancient Mars atmosphere is not well constrained, we did not try to simulate an ancient Mars climate under warm and wet condition. In stead, we used an idealized model and tried to extract general features of the hydrologic cycle by modeling an ideal land planet that has no ocean on its surface. Four different climate regimes, “warm-upright,” “warm-oblique,” “frozen-upright,” and “frozen-oblique” regimes, are recognized depending on the inclination of the spin axis (obliquity) and average surface temperature. The period of active hydrologic cycle suggested from the geomorphology on Mars seems to be consistent with that at the “warm-oblique” regime, which appears at warm (above-freezing) environment with high-obliquity (higher than about 30°) condition.  相似文献   
4.
The presence of pingos on Mars has been hypothesized since the period of the Viking mission. In fact, a diverse range of pingo-like features has been found at various martian sites including Elysium, Chryse and Utopia Planitiae in the northern lowlands. Due to the morphology and the geological setting, some of those features were interpreted in different ways, creating some controversies, as happened in Athabasca Valles. This reflects the complexity of interpreting these features by remote sensing and multiple plausible interpretations of the same feature. With the objective of identifying new possible pingos or rootless cones on Mars, we selected a study area in Utopia Planitia (10-55° N, 210-260° W) where the presence of both features is possible due to its geological history (volcanic and hydrological). We analyzed more than 2100 Mars Orbiter Camera (MOC)-narrow angle images in addition to Viking, Thermal Emission Imaging System (THEMIS), and High Resolution Stereo Camera (HRSC) images, together with Mars Orbiter Laser Altimeter (MOLA)-derived Digital Elevation Models (DEMs) with a Geographic Information System (GIS). We found in 94 MOC-narrow angle images dome, cone, and ring-shaped features. We analyzed them from morphological and morphometrical points of view in order to compare them with relevant features on Mars and Earth. We tested different possible origins for those features following the approach of multiple working hypotheses. We conclude that the dome, cone, and ring-shaped features could be pingos, which is in agreement with their geological settings. Regarding the driving heat source for the formation of the purported pingos, we propose the existence of a heat source, possibly a magma chamber, underneath the surface of the Utopia basin. Together with possible climatic shifts, the past activities of the heat source may have caused melting of ground ice. The pingo growth due to freezing of the water would have occurred during the following cold climatic conditions.  相似文献   
5.
Extensional and compressional structures are globally abundant on Mars. Distribution of these structures and their ages constrain the crustal stress state and tectonic evolution of the planet. Here in this paper, we report on our investigation over the distribution of the tectonic structures and timings of the associated stress fields from the Noachis-Sabaea region. Thereafter, we hypothesize possible origins in relation to the internal/external processes through detailed morphostructural mapping. In doing so, we have extracted the absolute model ages of these linear tectonic structures using crater size-frequency distribution measurements, buffered crater counting in particular. The estimated ages indicate that the tectonic structures are younger than the mega impacts events(especially Hellas) and instead they reveal two dominant phases of interior dynamics prevailing on the southern highlands, firstly the extensional phase terminating around3.8 Ga forming grabens and then compressional phase around 3.5-3.6 Ga producing wrinkle ridges and lobate scarps. These derived absolute model ages of the grabens exhibit the age ca. 100 Ma younger than the previously documented end of the global extensional phase. The following compressional activity corresponds to the peak of global contraction period in Early Hesperian. Therefore, we conclude that the planet wide heat loss mechanism, involving crustal stretching coupled with gravitationally driven relaxation(i.e.,lithospheric mobility) resulted in the extensional structures around Late Noachian(around 3.8 Ga). Lately cooling related global contraction generated compressional stress ensuing shortening of the upper crust of the southern highlands at the Early Hesperian period(around 3.5-3.6 Ga).  相似文献   
6.
Sakamoto  Kei  Tsujino  Hiroyuki  Nakano  Hideyuki  Urakawa  Shogo  Toyoda  Takahiro  Hirose  Nariaki  Usui  Norihisa  Yamanaka  Goro 《Ocean Dynamics》2019,69(10):1181-1202
Ocean Dynamics - In order to expand the coastal ocean monitoring and forecasting system of the Japan Meteorological Agency from the Seto Inland Sea to the entire coastal seas of Japan, a 2-km...  相似文献   
7.
The mapped area of Harmakhis Vallis, at the eastern Hellas Planitia region (35°30–42°50′S; 91°00–97°30′E), covers the surface area of about 212,000 km2. The region displays an enhanced modification of the initial topography formed by the Hellas impact. The long and complex history of degradation and alteration involves mass-wasting processes, volcanism and fluvial activity, confronting effects of climate-induced slow mass-wasting processes to effects caused by temporary, catastrophic events (impact cratering, volcanism, etc.). Geological mapping at scale of 1:1,500,000 (full scale at 1:540,000) have been carried out on multiple co-registered data sets available from the past and ongoing orbiter missions to Mars. The mapped geomorphic features of small- and medium-scales reveal in detail events that shaped the topography of the region throughout history, providing specific constraints on the geologic and climatic history of the region. This study highlights events from the most recent Martian history, including fluvial activity recorded in relation to a debris apron flanking Centauri Montes, and evidence of recent positive geothermal anomalies of a high heat-flux with relatively small spatial extents, on the timescale of several million years ago.  相似文献   
8.
We discuss in this paper possible roles of methane and carbon dioxide in geological processes on Mars. These volatiles in the martian crust may migrate upward from their sources either directly or via various traps (structural, sedimentary, ground ice, gas hydrates). They are then likely emitted to the atmosphere by seepage or through diverse vent structures. Though gas hydrates have never been directly detected on Mars, theoretical studies favor their presence in the crust and polar caps; they could have played an important role as significant gas reservoirs in the subsurface. The martian gas hydrates would possibly be a binary system of methane and carbon dioxide occupying clathrate cavities. Landforms such as mud volcanoes with well-known linkage to gas venting are extensively distributed on Earth, and methane is the primary gas involved. Thus, identification of these landforms on Mars could suggest that methane and possibly carbon dioxide have contributed to geological processes of the planet. For example, we present a newly identified field in Chryse Planitia where features closely resembling terrestrial mud volcanoes occur widely, though with no observable activity. We also present results of a preliminary search for possible recent or present-day, methane-emission zones in the regions over which enrichments of atmospheric methane have been reported.  相似文献   
9.
In this work, we perform an analysis of large dark dunes within Moreux Crater and Herschel Crater on Mars using High Resolution Imaging Science Experiment (HiRISE) and Context Camera (CTX) data sets. These data allow us to conduct a detailed analysis of dune morphology and slip faces, concluding that the studied dune fields are influenced by topographically‐controlled complex wind directions. Our morphological analysis reveals that inside Moreux Crater in particular, the topographic setting dominates the wind flow direction, leading to the development of a sand transport pathway encircling the central peak of the crater. The dune fields in Herschel Crater are also affected by winds controlled by variable topography as suggested by the presence of complex dunes and dune fields. Our analysis indicate that the studied dune systems is not the result of paleo‐wind regimes. Furthermore, we perform thermal inertia measurements using thermal emission spectrometer (TES) data, which indicate that the studied dune fields consist of medium sand 250–500 µm in diameter. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
10.
The uptake mechanism of anthropogenic CO2 in the Kuroshio Extension is examined by a Lagrangian approach using a biogeochemical model embedded in an ocean general circulation model. It is found that the uptake of anthropogenic CO2 is caused mainly by the increase of pCO2 dependency of seawater on temperature, which is caused by greater dissolved inorganic carbon concentration in the modern state than in the pre-industrial state. In contrast with the view of previous studies, the effect of the vertical entrainment, which brings waters that last contacted the atmosphere with the past lower CO2 concentration, is comparatively small. Winter uptake of anthropogenic CO2 increases with the rise of the atmospheric CO2 level, while summer uptake is relatively stable, resulting in a larger seasonal cycle of the uptake. This increase is significant, especially in the Kuroshio Extension region. It is newly suggested that this increase in the Kuroshio Extension region is largely caused by the combined effects of the increased pCO2 dependency of the sea water on the temperature and the seasonal difference in cooling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号