首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   145篇
  免费   11篇
  国内免费   4篇
测绘学   1篇
地球物理   65篇
地质学   66篇
海洋学   22篇
综合类   2篇
自然地理   4篇
  2023年   2篇
  2022年   3篇
  2021年   4篇
  2020年   7篇
  2019年   2篇
  2018年   10篇
  2017年   8篇
  2016年   9篇
  2015年   5篇
  2014年   12篇
  2013年   14篇
  2012年   2篇
  2011年   11篇
  2010年   6篇
  2009年   7篇
  2008年   18篇
  2007年   6篇
  2006年   10篇
  2005年   6篇
  2004年   5篇
  2003年   2篇
  2002年   4篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1997年   1篇
  1985年   1篇
排序方式: 共有160条查询结果,搜索用时 31 毫秒
1.
In this study, dynamic behavior and earthquake resistance of Alibey earth dam was investigated. The dam was modeled with four node plane-strain finite elements (FE) and displacement-pore pressure coupled FE analyses were performed. Nonlinear material models such as pressure dependent and independent multi yield materials were implemented during the analyses. Transient dynamic FE analyses were performed with Newmark method. The Newton-Raphson solution scheme was adopted to solve the equations. Liquefaction and/or cyclic mobility effects were considered during the analysis. For the FE analyses, OpenSees (Open System for Earthquake Engineering Simulation) framework was adopted.  相似文献   
2.
3.
TK-350 stereo-scenes of the Zonguldak testfield in the north-west of Turkey have been analysed. The imagery had a base-to-height ratio of 0·52 and covered an area of 200 km × 300 km, with each pixel representing 10 m on the ground. Control points digitised from 1:25 000 scale topographic maps were used in the test. A bundle orientation was executed using the University of Hanover program BLUH and PCI Geomatica OrthoEngine AE software packages. Tests revealed that TK-350 stereo-images can yield 3D geopositioning to an accuracy of about 10 m in planimetry and 17 m in height. A 40 m resolution digital elevation model (DEM) was generated by the PCI system and compared against a reference DEM, which was derived from digitised contour lines provided by 1:25 000 scale topographic maps. This comparison showed that accuracy depends mainly on the surface structure and the slope of the local terrain. Root mean square errors in height were found to be about 27 and 39 m outside and inside forested areas, respectively. The matched DEM demonstrated a systematic shift against the reference DEM visible as an asymmetric shift in the frequency distribution. This is perhaps caused by the presence of vegetation and buildings.  相似文献   
4.
Landslides are common natural hazards in the seismically active North Anatolian Fault Zone of Turkey. Although seismic activity, heavy rainfall, channel incisions, and anthropogenic effects are commonly the main triggers of landslides, on March 17, 2005, a catastrophic large landslide in Sivas, northeastern of Turkey, the Kuzulu landslide, was triggered by snowmelt without any other precursor. The initial failure of the Kuzulu landslide was rotational. Following the rotational failure, the earth material in the zone of accumulation exhibited an extremely rapid flow caused by steep gradient and high water content. The Agnus Creek valley, where Kuzulu village is located, was filled by the earth-flow material and a landslide dam was formed on the upper part of Agnus Creek. The distance from the toe of the rotational failure down to the toe of the earth flow measured more than 1800 m, with about 12.5 million m3 of displaced earth material. The velocity of the Kuzulu landslide was extremely fast, approximately 6 m/s. The main purposes of this study are to describe the mechanism and the factors conditioning the Kuzulu landslide, to present its environmental impacts, and to produce landslide-susceptibility maps of the Kuzulu landslide area and its near vicinity. For this purpose, a detailed landslide inventory map was prepared and geology, slope, aspect, elevation, topographic-wetness index and stream-power index were considered as conditioning factors. During the susceptibility analyses, the conditional probability approach was used and a landslide-susceptibility map was produced. The landslide-susceptibility map will help decision makers in site selection and the site-planning process. The map may also be accepted as a basis for landslide risk-management studies to be applied in the study area.  相似文献   
5.
6.

The Uromia–Dokhtar Magmatic Arc (UDMA) is a northwest–southeast trending magmatic belt which is formed due to oblique subduction of Neotethys underneath Central Iran and dominantly comprises magmatic rocks. The Jebal-e-Barez Plutonic Complex (JBPC) is located southeast of the UDMA and composed of quartz diorite, granodiorite, granite, and alkali granite. Magmatic enclaves, ranging in composition from felsic to mafic, are abundant in the studied rocks. Based on the whole rock and mineral chemistry study, the granitoids are typically medium-high K calc-alkaline and metaluminous to peraluminous that show characteristics of I-type granitoids. The high field strength (HFS) and large ionic radius lithophile (LIL) element geochemistry suggests fractional crystallization as a major process in the evolution of the JBPC. The tectonomagmatic setting of the granitoids is compatible with the arc-related granitic suite, a pre-plate collision granitic suite, and a syncollision granitic suite. Field observations and petrographic and geochemical studies suggest that the rocks in this area are I-type granitoids and continental collision granitoids (CCG), continental arc granitoids (CAG), and island arc granitoid (IAG) subsections. The geothermobarometry based on the electron probe microanalysis of amphibole, feldspars, and biotite from selected rocks of JBPC implies that the complex formed at high-level depths (i.e., 9–12 km; upper continental crust) and at temperatures ranging from 650 to 750 °C under oxidation conditions. It seems that JBPC is located within a shear zone period, and structural setting of JBPC is extensional shear fractures which are product of transpression tectonic regime. All available data suggested that these granitoids may be derived from a magmatic arc that was formed by northeastern ward subduction of the Neotethyan oceanic crust beneath the Central Iran in Paleogene and subsequent collision between the Arabian and Iranian plates in Miocene.

  相似文献   
7.
8.
We investigated the relationships between mineral content and the physical and mechanical properties of landscape rock using a non-destructive remote sensing method applied in the laboratory. Using this technique, the spectral properties of the landscape rock could be collected at different wavelengths without harming the samples. Differences in spectral reflectance were compared with the physical and mechanical properties of the stone. Significant correlations were observed between reflectance values and the rocks’ mechanical and physical properties, with correlation coefficients of 95 to 99 %. However, establishing a correlation between two variables is not a sufficient condition to establish a causal relationship. Mineral densities and mineral content are characteristics used for the classification of landscape rock. We have concluded that although spectral signatures from landscape rock can be used for predicting which stones might have similar features when comparing two batches of stone, the high correlations we discovered cannot confirm a cause and effect relationship that would allow for the prediction of a rock’s physical and mechanical properties. Although this conclusion is disappointing, the mineral content and the significant correlations discovered by hyperspectral reflectance scanning can be used as supplementary information when comparing two samples of landscape rock.  相似文献   
9.
In this study, the geometric accuracy comparison of aerial photos and WorldView-2 satellite stereo image data is evaluated with the different number and the distribution of the ground control points (GCPs) on the basis of large scale map production. Also, the current situation of rivalry between airborne and satelliteborne imagery was mentioned. The geometric accuracy of Microsoft UltraCam X 45 cm ground sampling distance (GSD) aerial imagery and WorldView-2 data both with and without GCPs are also separately analyzed. The aerial photos without any GCP by only using global navigation satellite system (GNSS) and inertial measurement unit (IMU) data with tie points give an accuracy of ±1.17 m in planimetry and ±0.71 m in vertical that means nearly two times better accuracy than the rational polynomial coefficient (RPC) of stereo WorldView-2. Using one GCP affects the accuracies of aerial photos and WorldView-2 in different ways. While this situation distorts the aerial photo block, it corrects the shift effect of RPC in WorldView-2 and increases the accuracy. By using four or more GCPs, ½?pixel (~0.23 m) accuracy in aerial photos and 1 pixel (~0.50 m) accuracy in WorldView-2 can be achieved in horizontal. In vertical, aerial photos have 1 pixel (~0.55 m) and WorldView-2 has 1.5 pixels (~0.85 m) accuracy. These results show that Worldview-2 imagery can be used in the production of class I 1:5000 scale maps according to the ASPRS Accuracy Standards for Digital Geospatial Data in terms of geometric accuracy. It is concluded that the rivalry between aerial and satellite imagery will continue for some time in the future.  相似文献   
10.
In this study, we investigated the structural properties of Urfa stone (US) doped with erbium oxide (Er2O3). Solid US was powdered by using an agate mortar, and its elemental composition was determined using inductive coupling plasma (ICP) methods. Varying amounts of Er2O3 (5, 10, 20, 30, and 40%) were added as a dopant to the US powder using mechanical alloying methods. The resultant samples were sintered at 1000 °C for 1 h. The structural properties of the Er2O3-doped US samples were subsequently investigated using X-ray diffraction (XRD), Fourier-transform infrared spectrometry (FTIR), and photoluminescence methods. Results from the XRD analysis of the Er2O3-doped US powder indicated two crystalline phases: (1) calcium oxide (CaO) or lime and (2) Er2O3. After the samples were sintered at 1000 °C, CaO, Er2O3, calcium carbonate (CaCO3), and mixed crystalline phases were observed. Results from the FTIR analysis of the Er2O3-doped US samples indicated absorption bands at 711.91, 872.08, and 1396.87 cm?1 in the spectra. Finally, photoluminescence analysis results indicated a shift in the emission and excitation bands to longer and shorter wavelengths, respectively, in the solid state (non-aqueous media) US-Er complex.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号