首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   1篇
大气科学   1篇
地球物理   11篇
地质学   22篇
综合类   1篇
自然地理   1篇
  2020年   3篇
  2018年   6篇
  2017年   4篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   2篇
  2011年   1篇
  2009年   1篇
  2006年   1篇
  1995年   1篇
  1986年   1篇
  1985年   1篇
  1982年   2篇
  1980年   1篇
  1979年   3篇
  1977年   1篇
  1976年   1篇
  1972年   1篇
  1970年   1篇
排序方式: 共有36条查询结果,搜索用时 31 毫秒
1.
Flood is among the deadliest disasters in India, and the frequency of floods and extreme precipitation events is projected to increase under the warming climate. The frequency of floods in India varies geographically as some regions are more prone to floods than the others. The Kerala flood of 2018 caused enormous economic damage, affected millions of people, and resulted in the death of more than 400 people. Here we provide a hydroclimatological perspective on the Kerala flood of 2018. Using the observations and model simulations from the Variable Infiltration Capacity (VIC) model, we show that the 2018 extreme precipitation and runoff conditions that caused flooding were unprecedented in the record of the past 66 years (1951–2017). Our results show that mean monsoon precipitation has significantly declined while air temperature has significantly increased during 1951–2017 in Kerala. The drying and warming trends during the monsoon season resulted in a declined total runoff in large part of the state in the last 66 years. Apart from the mean hydroclimatic conditions, extreme precipitation, and extreme total runoff have also declined from 1951 to 2017. However, 1 and 2-day extreme precipitation and extreme runoff conditions in August 2018 exceeded substantially from the long-term 95th percentiles recorded during 1951–2017. Since there is no increase in mean and extreme precipitation in Kerala over the last six decades, the extreme event during August 2018 is likely to be driven by anomalous atmospheric conditions due to climate variability rather anthropogenic climate warming. The severity of the Kerala flood of 2018 and the damage caused might be affected by several factors including land use/land cover change, antecedent hydrologic conditions, reservoir storage and operations, encroachment of flood plains, and other natural factors. The impacts of key drivers (anthropogenic and natural) on flood severity need to be established to improve our understanding of floods and associated damage.  相似文献   
2.
The vicinity of the India-Burma border region is among a few intracontinental regions in the world where intermediate-focus earthquakes occur. The recent installation of new seismic stations has improved the detection and location capabilities for earthquakes in this region. Three seismic stations belonging to this new array are located over the zone of intermediate-focus earthquakes. Analysis of recently acquired seismic data reveals a well-defined near-vertical zone of earthquake foci extending to 200 km beneath the Arakan-Yoma fold belt. On the basis of seismic, gravity and other geological data, it is suggested that this zone of earthquakes is associated with remnants of the already subducted, but not totally assimilated, Tethys oceanic lithosphere below the Burmese plate.  相似文献   
3.
Gupta H.K. and Singh V.P., 1982. Is Shillong region, northeast India, undergoing a dilatancy stage precursory to a large earthquake? In: A.L. Hales and Z. Suzuki (Editors), Earthquake Prediction. Tectonophysics, 85: 31–33.  相似文献   
4.
Summary A new significant correlation has been sought between high magnitude global seismicity and lateral surface wave velocity gradients. Rayleigh wave velocity divisioning of Eurasia, Africa, Pacific Ocean, Atlantic Ocean and Indian Ocean into regions of similar group velocity dispersion character of 30 sec period bySanto andSato [1]3) has been mainly used for calculating the gradients. It is quite striking to note that all earthquakes of magnitude 8.6 and above during 1897–1956 have occurred in regions having gradients of the order of 1.5·10–3 sec–1.Finally, some potential areas for high magnitude earthquake occurrences are predicted and the possible velocity gradients in regions, where division pattern is not yet investigated like South America and Australia, are also estimated.N.G.R.I. Contribution No. 70-170.  相似文献   
5.
Occurrence of small (3 ML < 4) earthquakes on two 10-km segments of the Calaveras fault between Calaveras and Anderson reservoirs follows a simple linear pattern of elastic strain accumulation and release. The centers of these independent patches of earthquake activity are 20 km apart. Each region is characterized by a constant rate of seismic slip as computed from earthquake magnitudes, and is assumed to be an isolated locked patch on a creeping fault surface. By calculating seismic slip rates and the amount of seismic slip since the time of the last significant (M 3) earthquake, it is possible to estimate the most likely date of the next (M - 3) event on each patch. The larger the last significant event, the longer the time until the next one. The recurrence time also appears to be increased according to the moment of smaller (2 < ML < 3) events in the interim. The anticipated times of future larger events on each patch, on the basis of preliminary location data through May 1977 and estimates of interim activity, are tabulated below with standard errors. The occurrence time for the southern zone is based on eight recurrent events since 1969, the northern zone on only three. The 95% confidence limits can be estimated as twice the standard error of the projected least-squares line. Events of M 3 should not occur in the specified zones at times outside these limits. The central region between the two zones was the locus of two events (M = 3.6, 3.3) on July 3, 1977. These events occurred prior to a window based on the three point, post-1969 slip-time line for the central region.
LatitudeLongitudeDepthMag.Target dateStandard error (days)
37°17′± 2′N121°39′±2′W5.0 ±2 km3.0–4.07-22-7722.3
37°26′± 2′N121°47′±2′W6.0 ± 2 km3.0–4.09-02-778.0
  相似文献   
6.
It is generally found that the b values associated with reservoir-triggered seismicity (RTS) are higher than the regional b values in the frequency magnitude relation of earthquakes. In the present study, temporal and spatial variation of b value is investigated using a catalog of 3,000 earthquakes from August 2005 through December 2010 for the Koyna?CWarna region in Western India, which is a classical site of RTS globally. It is an isolated (30?×?20?km2) zone of seismicity where earthquakes of up to M ??5 are found to occur during phases of loading and unloading of the Koyna and Warna reservoirs situated 25?km apart. For the Warna region, it is found that low b values of 0.6?C0.9 are associated with earthquakes of M ??4 during the loading phase. The percentage correlation of the occurrence of an M????4 earthquake with a low b value outside the 1?? or 2?? level is as high as 78?%. A drastic drop in the b value of about 50?% being reported for an RTS site may be an important precursory parameter for short-term earthquake forecast in the future.  相似文献   
7.
8.
9.
New empirical relations are derived for source parameters of the Koyna–Warna reservoir-triggered seismic zone in Western India using spectral analysis of 38 local earthquakes in the magnitude range M L 3.5–5.2. The data come from a seismic network operated by the CSIR-National Geophysical Research Institute, India, during March 2005 to April 2012 in this region. The source parameters viz. seismic moment, source radius, corner frequency and stress drop for the various events lie in the range of 1013–1016 Nm, 0.1–0.4 km, 2.9–9.4 Hz and 3–26 MPa, respectively. Linear relationships are obtained among the seismic moment (M 0), local magnitude (M L), moment magnitude (M w), corner frequency (fc) and stress drop (?σ). The stress drops in the Koyna–Warna region are found to increase with magnitude as well as focal depths of earthquakes. Interestingly, accurate depths derived from moment tensor inversion of earthquake waveforms show a strong correlation with the stress drops, seemingly characteristic of the Koyna–Warna region.  相似文献   
10.
Shallow aquifers typically have greater hydrologic connectivity and response to recharge and changes in surface water management practices than deeper aquifers and are therefore often managed to reduce the risk of flooding. Quantification of the water table elevation response under different management scenarios provides valuable information in shallow aquifer systems to assess indirect influences of such modifications. The episodic master recession method was applied to the 15‐min water table elevation and NEXRAD rainfall data for 6 wells to identify water table response and individual rainfall events. The objectives of this study were to evaluate the effects of rainfall, water table elevation, canal stage, site‐specific characteristics, and canal structure modification/water management practice on the fluctuations in water table elevations using multiple/stepwise multiple linear regression techniques. With the modification of canal structure and operation adjustment, significant difference existed in water table response in the southern wells due to its relative downstream position regarding the general groundwater flow direction and the structural modification locations. On average, water table response height and flood risk were lower after than before the structure modification to canals. The effect of rainfall event size on the height of water table response was greater than the effect of antecedent water table elevation and canal stage on the height of water table response. Other factors including leakance of the canal bed sediment, specific yield, and rainfall on i  ? 1 day had significant effects on the height of water table response as well. Antecedent water table elevation and canal stage had greater and more linear effects on the height of water table response after the management changes to canals. Variation in water table response height/rainfall event size ratio was attributed to difference in S y , antecedent soil water content, hydraulic gradient, rainfall size, and run‐off ratio. After the structure modification, water table response height/rainfall event size ratio demonstrated more linear and proportional relationship with antecedent water table elevation and canal stage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号