首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
大气科学   1篇
地球物理   5篇
地质学   5篇
自然地理   1篇
  2018年   1篇
  2016年   1篇
  2014年   2篇
  2013年   1篇
  2011年   1篇
  2008年   3篇
  2006年   2篇
  1979年   1篇
排序方式: 共有12条查询结果,搜索用时 255 毫秒
1.
In this study, dynamic behavior and earthquake resistance of Alibey earth dam was investigated. The dam was modeled with four node plane-strain finite elements (FE) and displacement-pore pressure coupled FE analyses were performed. Nonlinear material models such as pressure dependent and independent multi yield materials were implemented during the analyses. Transient dynamic FE analyses were performed with Newmark method. The Newton-Raphson solution scheme was adopted to solve the equations. Liquefaction and/or cyclic mobility effects were considered during the analysis. For the FE analyses, OpenSees (Open System for Earthquake Engineering Simulation) framework was adopted.  相似文献   
2.
We report the crustal structure for two locations in Iraq estimated by joint inversion of P -wave receiver functions (RFs) and surface (Rayleigh) wave group velocity dispersion. RFs were computed from teleseismic recordings at two temporary broad-band seismic stations located in Mosul (MSL) in the Zagros Fold Belt and Baghdad (BHD) in the Mesopotamian Foredeep. Group velocity dispersion curves at the sites were derived from continental-scale tomography. The inversion results show that the crustal thicknesses are 39 km at MSL and 43 km at BHD. We observe a strong Ps Moho at BHD consistent with a sharp Moho discontinuity. However, at MSL we observe a weak Ps Moho suggesting a transitional Moho where crustal thickening is likely to be occurring in the deep crust. Both sites reveal low velocity surface layers consistent with sedimentary thickness of about 3 km at station MSL and 7 km at BHD and agreeing well with the previous reports. Ignoring the sediments, the crystalline crustal velocities and thicknesses are remarkably similar at both stations. The similarity of crustal structure suggests that the crust of the northeastern proto-Arabian Platform was uniform before subsidence and deposition of the sediments in the Cenozoic. If crystalline crustal structure is uniform across the northern Arabian Platform then crustal thickness variations in the Zagros Fold Belt and Thrust Zone should reveal the history of deformation and crustal shortening in the Arabian–Eurasian collision zone and not reflect pre-existing crustal thickness variations in the Arabian Plate.  相似文献   
3.
This paper presents the numerical and experimental investigation of a dam foundation. The site consists of granite and especially weathered granite. Numerical and analytical analyses have been conducted to evaluate suitability of the granite for a dam foundation. Mohr–Coulomb failure criterion has been used to calculate the compressive strength of the rock mass. Finite element implementation of Mohr–Coulomb criterion has been used for deformation and settlement analysis. Packer testing and in-situ estimation of rock mass deformability using the Goodman jack have been performed. The results of the evaluations show that very small normal and differential settlements can be expected in structural regions due to dam construction, and the compacted concrete dam can safely be constructed on either the competent granite or the weathered granite. However, the dam foundation on the weathered granite has high conductivity potential problems for the reservoir.  相似文献   
4.
Mathematical relationships have been developed for reaeration rate coefficient (Ka) by various researchers. These relationships have a number of variables such as depth, velocity, width, slope, Froud number, molecular diffusion coefficient, kinematic viscosity and the gas‐transfer Reynolds number. From these variables, 29 relations have been developed and divided into four groups. To evaluate their predictive capability for highly variable flow rivers receiving high pollution loads form large cities, these relationships have been used to model dissolved oxygen (DO) in the River Ravi. Such rivers are either saturated with DO during high flows or anaerobic during critical low‐flow conditions. The evaluation is based on the agreement between model DO values calculated using Ka obtained from the available equations and the measured DO concentrations in the river samples in terms of sum of square of residuals (SSR) and coefficient of determination (R2). It has been found that in general, the group of equations containing depth and velocity as the only two variables affecting Ka performed better than the equations in other groups as reflected by lower SSR and higher R2 values. The study results also reveal that the turbulence‐based reaeration rate coefficient equation containing additional variables also resulted in close agreement between DO model results and the measured values. The study results identify the most important parameters affecting the reaeration rate coefficient and the suitability of various Ka relationships as well for rivers with highly variable flows. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
5.
In this study, a solution model is proposed to obtain input ground motion datasets compatible with given design spectra based on meta-heuristic harmony search algorithm. The utility of the solution model is demonstrated by generating ground motion datasets matching the Eurocode-8 design spectra for different soil types out of an extensive database of recorded motions. A total of 352 records are selected from the Pacific Earthquake Engineering Center (PEER) Strong Motion Database based on magnitude, distance, and site conditions to form the original ground motion domain. Then, the proposed harmony search based solution algorithm is applied on the pre-selected 352 time-series to obtain the ground motion record sets compatible with design spectra. The results demonstrate that the proposed HS based solution model provides an efficient way to develop input ground motion record sets that are consistent with code-based design spectra.  相似文献   
6.
A comparative study on linear and nonlinear site response analysis   总被引:3,自引:1,他引:3  
Site response analysis is usually the first step of any seismic soil-structure study. Geotechnical earthquake engineers and engineering geologist have been trying to find both practical and most appropriate solution techniques for ground response analysis under earthquake loadings. The paper attempts to give a critical overview of the field of site response analysis. In this paper, the influences of nonlinearity on the site response analysis summarized and were evaluated with a numerical example. Site response of a two layered soil deposit with the assumption of linear and rigid base bedrock (or viscoelastic half-space) was analyzed by using linear and nonlinear approaches. The amplification spectrum of the soil column is computed between the top and the bottom of this soil deposit. Nonlinear analysis was compared with the linear method of analysis. Steps involved in ground response analyses to develop site-specific response spectra at a soil site are briefly summarized. Some of the well-known site response analysis methods are summarized and similarities and differences between linear and nonlinear methods are compared by a numerical example.  相似文献   
7.
A short period three component seismic system was operated for a period of more than 1000 hrs (distributed over five intervals) at the Badra area, east central Iraq, during the period November 1975–March 1976.

A short review is given of the analyses of the seismograms, such as rate of occurrence of microearthquakes, statistical analysis and spectral analysis of selected events.  相似文献   

8.
9.
The collision zone between the Arabian and Eurasian plates is one of the most seismically active regions. Northern Iraq represents the northeastern part of the Arabian plate that has a suture zone with the Turkish and Iranian plates called the Bitlis–Zagros suture zone. The orientations of the principal stress axes can be estimated by the formal stress inversion of focal mechanism solutions. The waveform moment tensor inversion method was used to derive a focal mechanism solution of 65 earthquakes with magnitudes range from 3.5 to 5.66 in the study area. From focal mechanism solutions, the direction of slip and the orientations of the moment stress axes (P, N, and T) on the causative fault surface during an earthquake were determined. The dataset of the moment stress axes have been used to infer the regional principal stress axes (σ 1, σ 2, and σ 3) by the formal stress inversion method. Two inversion methods, which are the new right dihedron and the rotational optimization methods, were used. The results show that six stress regime categories exist in the study area. However, the most common tectonic regimes are the strike-slip faulting (43.94 %), unspecified oblique faulting (27.27 %), and thrust faulting (13.64 %) regimes. In most cases, the strike-slip movement on the fault surfaces consists of left-lateral (sinistral) movement. The normal faulting is located in one small area and is due to a local tensional stress regime that develops in areas of strike-slip displacements as pull-apart basins. The directions of the horizontal stress axes show that the compressional stress regime at the Bitlis–Zagros suture zone has two directions. One is perpendicular to the suture zone near the Iraq–Iran border and the second is parallel in places as well as perpendicular in others to the suture zone near the Iraq–Turkey border. In addition, the principal stress axes in the Sinjar area near the Iraq–Syria border have a E–W direction. These results are compatible with the tectonic setting of the Arabian–Eurasian continental collision zone and the anticlockwise rotation of the Arabian plate that is evidently responsible for the strike-slip displacements on fault surfaces.  相似文献   
10.
Northern Iraq represents part of the convergent plate boundary between the Arabian and Eurasian plates. The collision zone between these two plates is manifested by the Bitlis–Zagros Fold and Thrust Belt. This belt is one of the most seismically active regions among the present active belts. This study intends to improve our knowledge on the seismotectonic activities in northern Iraq and the surrounding areas. To reach this goal, we used the waveform moment tensor inversion method to determine the focal depths, moment magnitudes, fault plane solutions, and directions of the principal stress axes of 25 events with magnitudes ≥3.5. The seismic data of these events were collected from 54 broadband stations which belong to the Kandilli Observatory and Earthquake Research Institute, the Incorporated Research Institutions for Seismology, the Observatories and Research Facilities for European Seismology, and the Iraqi Seismological Network. Computer Programs in Seismology, version 3.30 (Herrmann and Ammon 2004), was used for analysis. The results show that the focal depth of these events ranged from 15 to 25 km in general. The fault plane solutions show that the strike-slip mechanism is the most dominant mechanism in the study area, usually with a reverse component. The stress regime shows three major directions; north–south, northeast-southwest, and east–west. These directions are comparable with the tectonic regime in the region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号