首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   321篇
  免费   1篇
测绘学   7篇
大气科学   24篇
地球物理   63篇
地质学   166篇
海洋学   13篇
天文学   37篇
综合类   2篇
自然地理   10篇
  2016年   7篇
  2015年   5篇
  2014年   5篇
  2013年   9篇
  2012年   4篇
  2011年   12篇
  2010年   12篇
  2009年   10篇
  2008年   12篇
  2007年   10篇
  2006年   10篇
  2005年   15篇
  2004年   10篇
  2003年   7篇
  2002年   11篇
  2001年   6篇
  2000年   11篇
  1999年   3篇
  1998年   4篇
  1997年   4篇
  1996年   4篇
  1995年   3篇
  1994年   7篇
  1993年   4篇
  1992年   4篇
  1991年   5篇
  1989年   5篇
  1988年   3篇
  1987年   6篇
  1986年   5篇
  1985年   7篇
  1980年   4篇
  1979年   4篇
  1976年   3篇
  1974年   6篇
  1973年   6篇
  1972年   5篇
  1969年   3篇
  1967年   5篇
  1966年   4篇
  1964年   4篇
  1963年   3篇
  1960年   6篇
  1959年   4篇
  1956年   3篇
  1954年   2篇
  1953年   2篇
  1951年   2篇
  1949年   2篇
  1940年   3篇
排序方式: 共有322条查询结果,搜索用时 46 毫秒
1.
Concepts involved in the estimation of target quantities and other adjustment parameters are critically discussd. We point out that one can find more accurate precepts for the reduction of data by utilizing all available constraints on all available data in the derivation of the reduction precepts. We introduce a measure for theefficiency of a set of adjustment parameters such that adjustments carried out using different precepts can be objectively compared. Finally, having applied our suggestions to a specific problem, we show that we have obtained estimates of a set of target quantities (in our case, star positions and proper motions) which have smaller formal errors than estimates of the same target quantities derived from the same input material but following traditional procedures.  相似文献   
2.
Abstract— The low temperature fine‐grained material in unequilibrated chondrites, which occurs as matrix, rims, and dark inclusions, carries information about the solar nebula and the earliest stages of planetesimal accretion. The microdistribution of primordial noble gases among these components helps to reveal their accretionary and alteration histories. We measured the Ne and Ar isotopic ratios and concentrations of small samples of matrix, rims, and dark inclusions from the unequilibrated carbonaceous chondrites Allende (CV3), Leoville (CV3), and Renazzo (CR2) and from the ordinary chondrites Semarkona (LL3.0), Bishunpur (LL3.1), and Krymka (LL3.1) to decipher their genetic relationships. The primordial noble gas concentrations of Semarkona, and—with certain restrictions—also of Leoville, Bishunpur, and Allende decrease from rims to matrices. This indicates a progressive accretion of nebular dust from regions with decreasing noble gas contents and cannot be explained by a formation of the rims on parent bodies. The decrease is probably due to dilution of the noble‐gas‐carrying phases with noble‐gas‐poor material in the nebula. Krymka and Renazzo both show an increase of primordial noble gas concentrations from rims to matrices. In the case of Krymka, this indicates the admixture of noble gas‐rich dust to the nebular region from which first rims and then matrix accreted. This also explains the increase of the primordial elemental ratio 36Ar/ 20Ne from rims to matrix. Larger clasts of the noble‐gas‐rich dust form macroscopic dark inclusions in this meteorite, which seem to represent unusually pristine material. The interpretation of the Renazzo data is ambiguous. Rims could have formed by aqueous alteration of matrix or—as in the case of Krymka—by progressive admixture of noble gas‐rich dust to the reservoir from which the Renazzo constituents accreted. The Leoville and Krymka dark inclusions, as well as one dark inclusion of Allende, show noble gas signatures different from those of the respective host meteorites. The Allende dark inclusion probably accreted from the same region as Allende rims and matrix but suffered a higher degree of alteration. The Leoville and Krymka dark inclusions must have accreted from regions different from those of their respective rims and matrices and were later incorporated into their host meteorites. The noble gas data imply a heterogeneous reservoir with respect to its primordial noble gas content in the accretion region of the studied meteorites. Further studies will have to decide whether these differences are primary or evolved from an originally uniform reservoir.  相似文献   
3.
Ohne Zusammenfassung Ausgeführt und herausgegeben mit Unterstützung der ?Georges und Antoine Claraz-Schenkung instituta et curata Johannis Schinz Professoris auspiciis?  相似文献   
4.
Combined fluid inclusion microthermometry and microanalysis by laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) are used to constrain the hydrothermal processes forming a typical Climax-type porphyry Mo deposit. Molybdenum mineralisation at Questa occurred in two superimposed hydrothermal stages, a magmatic-hydrothermal breccia and later stockwork veining. In both stages, texturally earliest fluids were single-phase, of low salinity (~7 wt.% NaClequiv.) and intermediate-density. Upon decompression to ~300 bar, they boiled off a vapour phase, leaving behind a residual brine (up to 45 wt.% NaClequiv) at temperatures of ~420°C. The highest average Mo concentrations in this hot brine were ~500 μg/g, exceeding the Mo content of the intermediate-density input fluid by about an order of magnitude and reflecting pre-concentration of Mo by fluid phase separation prior to MoS2 deposition from the brine. Molybdenum concentrations in brine inclusions, then, decrease down to 5 μg/g, recording Mo precipitation in response to cooling of the saline liquid to ~360°C. Molybdenite precipitation from a dense, residual and probably sulphide-depleted brine is proposed to explain the tabular shape of the ore body and the absence of Cu-Fe sulphides in contrast to the more common Cu-Mo deposits related to porphyry stocks. Cesium and Rb concentrations in the single-phase fluids of the breccia range from 2 to 8 and from 40 to 65 μg/g, respectively. In the stockwork veins, Cs and Rb concentrations are significantly higher (45–90 and 110–230 μg/g, respectively). Because Cs and Rb are incompatible and hydrothermally non-reactive elements, the systematic increase in their concentration requires two distinct pulses of fluid exsolution from a progressively more fractionated magma. By contrast, major element and ore metal concentrations of these two fluid pulses remain essentially constant. Mass balance calculations using fluid chemical data from LA-ICPMS suggest that at least 25 km3 of melt and 7 Gt of deep input fluid were necessary to provide the amount of Mo contained in the stockwork vein stage alone. While the absolute amounts of fluid and melt are uncertain, the well-constrained element ratios in the fluids together with empirical fluid/melt partition coefficients derived from the inclusion analyses suggest a high water content of the source melt of ~10%. In line with other circumstantial evidence, these results suggest that initial fluid exsolution may have occurred at a confining pressure exceeding 5 kbar. The source of the molybdenum-mineralising fluids probably was a particularly large magma chamber that crystallised and fractionated in the lower crust or at mid-crustal level, well below the shallow intrusions immediately underlying Questa and other porphyry molybdenum deposits. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
5.
The massive sulfide deposits of the Iberian Pyrite Belt are interbedded with felsic volcanic rocks and shale, and underlain by several thousand meters of siliciclastic sedimentary rocks known as the PQ Group. Isotope geochemistry and regional geology are both consistent with equilibration of the ore-forming fluids with the PQ Group, prior to ore deposition near the former seafloor. The average Cu:Zn:Pb ratio of the PQ Group rocks (ca. 26:55:19) is similar to the weighted average of all the massive sulfide orebodies combined (ca. 25:52:23).The genetic relationship between massive sulfide deposits and a siliciclastic sedimentary metal source is explained here by a thermodynamic model, proposing that mildly reducing redox conditions imposed by equilibration with the sedimentary rocks are most critical for the formation of an effective ore-forming fluid. Relatively metal-rich but organic-poor pyrite-bearing shale undergoing dewatering of saline pore fluids is an effective source for the generation of sulfur-deficient but relatively iron and base metal-rich brines. Thus, we propose that the giant deposits of the Iberian Pyrite Belt owe their existence not to exceptionally metal-enriched (e.g., magmatic) fluids, but to the existence of a fairly ordinary but large metal source in reactive siliciclastic sediments, combined with an underlying igneous heat source and a particularly efficient mechanism of sulfide precipitation by mixing with H2S-rich fluids at or near the seafloor.Essentially similar mineral equilibria are imposed when saline fluids are buffered by typical continental basement rocks. Leaching of retrograde minerals and possibly residual salts from their magmatic or metamorphic prehistory is expected to generate similar, variably metal-rich but relatively sulfide-deficient fluids. Thus, the existence of mildly reducing rocks can be the dominant chemical control in the source of fluids generating many volcanogenic, Irish-type or sedex deposits, many of which are known to precipitate their metal load in response to biogenic sulfide addition at the ore deposition site.  相似文献   
6.
Solar wind (SW) helium, neon, and argon trapped in a bulk metallic glass (BMG) target flown on NASA’s Genesis mission were analyzed for their bulk composition and depth-dependent distribution. The bulk isotopic and elemental composition for all three elements is in good agreement with the mean values observed in the Apollo Solar Wind Composition (SWC) experiment. Conversely, the He fluence derived from the BMG is up to 30% lower than values reported from other Genesis bulk targets or in-situ measurements during the exposure period. SRIM implantation simulations using a uniform isotopic composition and the observed bulk velocity histogram during exposure reproduces the Ne and Ar isotopic variations with depth within the BMG in a way which is generally consistent with observations. The similarity of the BMG release patterns with the depth-dependent distributions of trapped solar He, Ne, and Ar found in lunar and asteroidal regolith samples shows that also the solar noble gas record of extraterrestrial samples can be explained by mass separation of implanted SW ions with depth. Consequently, we conclude that a second solar noble gas component in lunar samples, referred to as the “SEP” component, is not needed. On the other hand, a small fraction of the total solar gas in the BMG released from shallow depths is markedly enriched in the light isotopes relative to predictions from implantation simulations with a uniform isotopic composition. Contributions from a neutral solar or interstellar component are too small to explain this shallow sited gas. We tentatively attribute this superficially implanted gas to low-speed, current-sheet related SW, which was fractionated in the corona due to inefficient Coulomb drag. This fractionation process could also explain relatively high Ne/Ar elemental ratios in the same initial gas fraction.  相似文献   
7.
Methodology and use of tensor invariants for satellite gravity gradiometry   总被引:2,自引:1,他引:1  
Although its use is widespread in several other scientific disciplines, the theory of tensor invariants is only marginally adopted in gravity field modeling. We aim to close this gap by developing and applying the invariants approach for geopotential recovery. Gravitational tensor invariants are deduced from products of second-order derivatives of the gravitational potential. The benefit of the method presented arises from its independence of the gradiometer instrument’s orientation in space. Thus, we refrain from the classical methods for satellite gravity gradiometry analysis, i.e., in terms of individual gravity gradients, in favor of the alternative invariants approach. The invariants approach requires a tailored processing strategy. Firstly, the non-linear functionals with regard to the potential series expansion in spherical harmonics necessitates the linearization and iterative solution of the resulting least-squares problem. From the computational point of view, efficient linearization by means of perturbation theory has been adopted. It only requires the computation of reference gravity gradients. Secondly, the deduced pseudo-observations are composed of all the gravitational tensor elements, all of which require a comparable level of accuracy. Additionally, implementation of the invariants method for large data sets is a challenging task. We show the fundamentals of tensor invariants theory adapted to satellite gradiometry. With regard to the GOCE (Gravity field and steady-state Ocean Circulation Explorer) satellite gradiometry mission, we demonstrate that the iterative parameter estimation process converges within only two iterations. Additionally, for the GOCE configuration, we show the invariants approach to be insensitive to the synthesis of unobserved gravity gradients.  相似文献   
8.
We develop and apply an efficient strategy for Earth gravity field recovery from satellite gravity gradiometry data. Our approach is based upon the Paige-Saunders iterative least-squares method using QR decomposition (LSQR). We modify the original algorithm for space-geodetic applications: firstly, we investigate how convergence can be accelerated by means of both subspace and block-diagonal preconditioning. The efficiency of the latter dominates if the design matrix exhibits block-dominant structure. Secondly, we address Tikhonov-Phillips regularization in general. Thirdly, we demonstrate an effective implementation of the algorithm in a high-performance computing environment. In this context, an important issue is to avoid the twofold computation of the design matrix in each iteration. The computational platform is a 64-processor shared-memory supercomputer. The runtime results prove the successful parallelization of the LSQR solver. The numerical examples are chosen in view of the forthcoming satellite mission GOCE (Gravity field and steady-state Ocean Circulation Explorer). The closed-loop scenario covers 1 month of simulated data with 5 s sampling. We focus exclusively on the analysis of radial components of satellite accelerations and gravity gradients. Our extensions to the basic algorithm enable the method to be competitive with well-established inversion strategies in satellite geodesy, such as conjugate gradient methods or the brute-force approach. In its current development stage, the LSQR method appears ready to deal with real-data applications.  相似文献   
9.
In this provenance study of late Palaeozoic metasediments of the Eastern Andean Metamorphic Complex (EAMC) along the south Patagonian proto-Pacific margin of Gondwana, the palaeogeological setting of the continental margin in Devonian–Carboniferous and Permian times is reconstructed. The study is based on detrital heavy mineral contents, chemical compositions of tourmaline grains, and whole rock element and Nd-Sr isotopic compositions. Element and isotopic compositions reveal that Devonian–Carboniferous metaturbidites deposited before the development of a Late Carboniferous–Permian magmatic arc along the margin were mainly fed from felsic, recycled, old continental rocks. The last recycling phase involved erosion of metasediments that were exposed in Patagonia. Feeder systems to the basin cut either through epidote-rich or garnet-rich metasediments. In Permian time, EAMC metaturbidites were deposited next to the evolving magmatic arc and were derived from felsic, crustal rocks. Two provenance domains are recognised. The metasediments of the northern one are chemically similar to those of the Devonian–Carboniferous metasediments. This domain was fed from the metasedimentary host rocks of the magmatic arc. The southern domain probably was fed from the arc proper, as indicated mainly by the dominance of metaplutonic lithic fragments, abundant detrital biotite, and the major element composition of the metasediments.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号