首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   2篇
地球物理   10篇
地质学   13篇
海洋学   1篇
综合类   1篇
自然地理   3篇
  2018年   2篇
  2015年   2篇
  2011年   2篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2005年   2篇
  2004年   2篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1997年   3篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1985年   1篇
排序方式: 共有28条查询结果,搜索用时 109 毫秒
1.
Significant faulting and deformation of the ground surface has been rarely known during volcanic eruptions. Usu Volcano, Hokkaido, Japan, is a unique example of deformation due to felsic magma intrusion. Usu Volcano has a history of such types of eruptions as phreatic, pumice eruption (Plinian type), pyroclastic flowing and lava doming since 1663. On March 31, 2000, phreatomagmatic to phreatic eruptions took place after 23 years of dormancy in the western piedmont, followed by explosions on the western flank of Usu Volcano. They were associated with significant deformation including faulting and uplift. The eruptions and deformation were continuing up to the end of May 2000.We identified the faulting using total nine sets of aerial photographs taken from before the eruption (March 31, 2000) to more than 1 year (April 27, 2001) after the end of the activity, and traced deformation processes through image processing using aerial photographs. We found that some of the new faults and the associated phreatic eruptions were related to old faults formed during the 1977–1981 eruptive episode.The image processing has revealed that the surface deformation is coincident with the area of faulting forming small grabens and the phreatic explosion vents. However, the faulting and main explosive eruptions did not take place in the highest uplift area, but along the margin. This suggests that the faulting and explosive activities were affected by small feeder channels diverging from the main magma body which caused the highest uplift.  相似文献   
2.
The island of Hokkaido, Japan, is subdivided into nineteen regions on the basis of regional geology and landslide distribution. Four major geologic zones characterize these regions, as follows: (1) Volcanic Rock Zone, (2) “Green Tuff” Zone, (3) Mudstone Zone, and (4) Serpentinite “Green Rock” Zone. Each zone is marked by landslides of a distinctive type. In addition, we have analyzed the relationship between landslide distribution and geologic structure for several areas.  相似文献   
3.
4.
The biological and physical controls on microbial processes that produce and consume N2O in soils are highly complex. Isotopomer ratios of N2O, with abundance of 14N15N16O, 15N14N16O, and 14N14N18O relative to 14N14N16O, are promising for elucidation of N2O biogeochemistry in an intact ecosystem. Site preference, the nitrogen isotope ratio of the central nitrogen atom minus that of the terminal nitrogen atom, is useful to distinguish between N2O via hydroxylamine oxidation and N2O via nitrite reduction.We applied this isotopomer analysis to a groundwater system in a temperate coniferous-forested ecosystem. Results of a previous study at this location showed that the N2O concentration in groundwater varied greatly according to groundwater chemistry, i.e. NO3, DOC, and DO, although apportionment of N2O production to nitrification or denitrification was ambiguous. Our isotopic analysis (δ15N and δ18O) of NO3 and N2O implies that denitrification is the dominant production process of N2O, but definitive information is not derived from δ15N and δ18O analysis because of large variations in isotopic fractionations during production and consumption of N2O. However, the N2O site preference and the difference in δ15N between NO3 and N2O indicate that nitrification contributes to total N2O production and that most measured N2O has been subjected to further N2O reduction to N2. The implications of N2O biogeochemistry derived from isotope and isotopomer data differ entirely from those derived from conventional concentration data of DO, NO3, and N2O. That difference underscores the need to reconsider our understanding of the N cycle in the oxic-anoxic interface.  相似文献   
5.
Although earthquakes are thought to be one of the factors responsible for the occurrence of landslides in Hokkaido, there exist no enough records which can allow correlating many of the old slope failures in the island with earthquakes. In the absence of these records, an attempt was done in this study to use the abundance, frequency, magnitude, depth, and distribution of historical earthquakes to deduce that many of the slope failures in the region were triggered by strong and continuous seismicity. The determination of the zones of influences of selected earthquakes using an existing empirical function has also supported this conclusion. Moreover, the use of a 10% probability of exceedance of earthquake intensity in 50 years, and the geological and slope maps has allowed preparing a landslide hazard map which explains the role of future earthquakes in the formation of slope failures. The result indicates a high probability of occurrences of landslides in the hilly regions of the southeastern part of Hokkaido due to expected strong seismicity and earthquake intensities in these areas. On the other hand, the low level of intensity in the north has given rise to low probability of landslide hazard. There are also places in the center of the island and high intensity regions in the east where the probability of landslide hazard was influenced by the contribution of the geological and slope maps.  相似文献   
6.
Recent Landslides in Western Hokkaido,Japan   总被引:4,自引:0,他引:4  
—Western Hokkaido, the northernmost island of Japan, is prone to landsliding due to geologic, geomorphologic and climatic change. From 1985 to 1997, many rapid large-scale landslides occurred in western Hokkaido, several of which are reviewed in this paper. The 1988 Kamaya Slide, the 1991 Tachimachi-misaki Slide (which was preceded by the 1985 Orito Slide), the 1993 Okushiri-Port Slide, and the 1994 Motochi Earthflow are described. Finally, two sea-cliff rockfalls are also described.¶The Okushiri-port Slide and the Toyohama Tunnel Rockfall claimed 29 and 20 lives, respectively. Except for the Okushiri-port Slide, which was induced by Hokkaido Nansei-oki Earthquake, most of the slides and rockfalls were probably related to geological structures, such as gentle-dipping strata interbedded with clayey tuffs and were triggered by long-duration and/or high precipitation, causing increased groundwater levels and/or high water pressures.  相似文献   
7.
A study was made of the polar cap absorption (PCA) event on 23–24 March 1991 produced by the largest solar proton event at E>10 MeV since August 1972. This PCA event was related to a solar flare in the eastern hemisphere lasting only 2 days and exhibiting a long time delay between the flare and the increase of ionospheric absorption. Midday recovery occurred regularly each PCA day near the cutoff lati- tudes during the noontime hours and is attributed to the daily variation in the proton cutoff latitudes. The maximum absorption during the PCA event was observed at high latitudes or near the cutoff latitudes where ionization may be due to both solar protons and trapped particles. The minimum in the absorption values during the night-time hours would appear to be caused by the chemistry of the D-region as well as access of the solar protons into the polar cap area.  相似文献   
8.
A sufficient knowledge on the kinematics and development of landslides helps to adopt proper measures that can be used to protect slopes and the environment in general. This can be achieved by adequate monitoring programs. This paper presents the findings of intensive monitoring activities carried out on Shiidomari and Katanoo landslides found in Sado Island of Japan. More than one year of observation of the two landslides allowed defining some peculiar futures of their kinematics and style of development. The problem of slope instability in the two areas is generally accredited to various factors. But, both landslides were triggered by heavy rainfalls and snowmelt. Because of the outline of the area and the presence of relict topographic features, the Shiidomari landslide is considered to be a large-scale reactivation of old slope failures. The Katanoo landslide is, however, a first-time case. Geophysical investigations and drilling activities in Shiidomari indicated the presence of two slip planes. The deepest (80–100 m) of these is controlled by existing lineaments. Monitoring data suggests that the body of the landslide has subsided as much as 1.16 m just below the main scarp, but a centimeter in the central region. The toe sector also experienced a significant amount of subsidence, but this was counter-balanced by an uplift on the opposite side of the landslide. Hence, the landslide seems not any more active along the deepest slip surface, although it may extend upward and define a series of shallow shear planes around the crown. In the case of Katanoo, the landform characteristics, differential weathering, the road cut and groundwater fluctuations appeared to contribute much to determine the exact location of the landslide. Extensional cracks that preceded the landslide can be related to heavy rainfalls and the cold and warm cycles thereafter. Subsurface investigations and monitoring works indicated that the landslide has two slide blocks with different slip planes. During the observation period, the upper part of the landslide responded more effectively to rainfall and snowmelt than the middle and lower sections. The corresponding movements, however, appeared to settle about three months after failure. There were also little strain transmissions in boreholes and no significant change in the characteristics of the landslide. The kinematics of deformation of many of the slopes in Sado Island resembles that of Shiidomari landslide. But mass movements along highways and mountain roads are usually similar to Katanoo. Landslides of the type like Shiidomari may not show sudden and drastic failures, but are usually long lasting and can reactivate repeatedly along new, shallow shear planes. Monitoring works and long-term supervisions in these types of landslides are useful to identify impending failures and take the right measures before they brought about large-scale destruction to the environment.  相似文献   
9.
Cr-droped and Cr,Li-doped forsterite crystals were grown and their optical properties were investigated. It was shown that when only Cr is doped, Cr3+ is substituted at the site of low crystal field, and the energy level 2E lie above the 4T2 level, while 4T2 is just above 2E when Cr and Li are codoped. The difference was rationalized by a deformation of the Cr substituted site with the introduction of Li.  相似文献   
10.
In order to estimate the dynamic structure of the VLF ionospheric exit point, we conducted multipoint ground-based observation of the natural VLF emissions at three unmanned sites: West Ongul (69°01′ S, 39°30′ E), Skallen (69°40′ S, 39°24′ E), and H100 (69°18′ S, 41°19′ E) around Japanese Syowa station, Antarctica, during a whole year of 2006. In this observation, we developed three sets of unmanned autonomous observation systems for natural VLF emissions. Each observation system consists of two crossed vertical loop antennas to pick-up North–South (NS) and East–West (EW) magnetic components, a multi-channel analyzer, and a data logger. The intensity and polarization of NS and EW magnetic components are obtained in 4 spaced frequency (0.5, 1.0, 2.0, and 6.0 kHz) channels by the multi-channel analyzer.The VLF emissions observed at the three sites exhibit an interesting difference in the wave intensity as well as the polarization that allows important information about the locations of their ionospheric exit point to be determined. Firstly, to find the distinct exit point, we have theoretically calculated the spatial distributions of the wave intensity and the polarization on the Earth for VLF whistler mode waves coming down from the magnetized ionosphere, by using the full-wave analysis. Then, we have compared the calculated results with the observed data, to evaluate the possible locations of the ionospheric exit point for the auroral hiss events.As an example, the direction of the estimated ionospheric exit point for the auroral hiss event at 31 March 2006 was found to be consistent with a bright aurora region. However, in this case, the estimated ionospheric exit point was located a few hundred kilometers equatorward of the associated aurora. This would suggest that the ray paths for the auroral hiss could be different from the directions of the geomagnetic field lines for auroral precipitation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号