首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   1篇
地球物理   13篇
地质学   13篇
海洋学   26篇
天文学   13篇
自然地理   2篇
  2021年   1篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2014年   4篇
  2013年   2篇
  2012年   5篇
  2011年   2篇
  2010年   3篇
  2009年   5篇
  2008年   8篇
  2007年   3篇
  2006年   6篇
  2005年   3篇
  2004年   1篇
  2002年   1篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
  1974年   1篇
排序方式: 共有67条查询结果,搜索用时 375 毫秒
1.
2.
The northward intruding eddy along the East coast of Korea   总被引:5,自引:0,他引:5  
The current structures and their seasonal variations in the East Korean Warm Current (EKWC) region, which plays a significant role in the northward transport of warm and saline waters, were described by combining the sea surface temperature (SST) data of consecutive satellite inferred (IR) images and hydrographic data. The SST patterns in winter-spring clearly showed that the small meander of thermal front originating from the Tsushima/Korea Strait formed close to the Korean coast and grew an isolated warm eddy with horizontal dimension of order 100 km. Such warm eddy began to intrude slowly northward from spring to summer. At that time, interactions with neighboring synoptic warm eddy [Ks] around the Ulleung Basin were found to have strongly influence the movement of the intruding eddy and its structural change. In autumn, after the northward movement stopped at the north of eddy [Ks], the relative stable northward current along the Korean coast were formed. The evidence from observational results does not support a persistent branching of the EKWC from the Tsushima/Korea Strait, but a seasonal episodic supply of warm and saline waters due to the northward intruding eddy process described above.  相似文献   
3.
Hydrographic data and composite current velocity data (ADCP and GEK) were used to examine the seasonal variations of upper-ocean flow in the southern sea area of Hokkaido, which includes the “off-Doto” and “Hidaka Bay” areas separated by Cape Erimo. During the heating season (April–September), the outflow of the Tsugaru Warm Current (TWC) from the Tsugaru Strait first extends north-eastward, and then one branch of TWC turns to the west along the shelf slope after it approaches the Hidaka Shelf. The main flow of TWC evolves continuously, extending eastward as far as the area off Cape Erimo. In the late cooling season (January–March), part of the Oyashio enters Hidaka Bay along the shallower part of the shelf slope through the area off Cape Erimo, replacing almost all of the TWC water, and hence the TWC devolves. It is suggested that the bottom-controlled barotropic flow of the Oyashio, which may be caused by the small density difference between the Oyashio and the TWC waters and the southward migration of main front of TWC, permits the Oyashio water to intrude along the Hidaka shelf slope.  相似文献   
4.
The higher mode predominance in the current velocity fields associated with wind-induced shelf waves in the nondispersive regime is studied with a special attention to the effect of the geographical boundary, e.g. wide strait or wide bank areas. The effect of such large topographic change is represented by wind forcing with a finite dimension near the geographical boundary. The time development processes of the wind-induced shelf waves is examined in the context of an initial-value problem, where a spatially finite wind stress is applied att=0. Various modes of shelf waves excited at the boundary start propagating simultaneously and develop monotonically within the forcing region. After the passage of such wave, the energy of wind is used to maintain the attained equilibrium condition, i.e. the steady shelf circulation. The current evolution of the lower mode is restricted to the earlier stage because of the large propagation speed. In contrast, the higher mode waves can travel slowly within the forcing region so that the kinetic energy is supplied from wind stress for a long time before the equilibrium condition is established. Consequently, the observation at the fixed point near the geographical boundary would show that the higher mode waves gradually dominate as time goes on, i.e. for the long-term forcing.  相似文献   
5.
Effects of inertial and kinematic forces on pile stresses are studied based on large shaking table tests on pile-structure models with a foundation embedded in dry and liquefiable sand deposits. The test results show that, if the natural period of the superstructure, Tb, is less than that of the ground, Tg, the ground displacement tends to be in phase with the inertial force from the superstructure, increasing the shear force transmitted to the pile. In contrast, if Tb is greater than Tg, the ground displacement tends to be out of phase with the inertial force, restraining the pile stress from increasing. With the effects of earth pressures on the embedded foundation and pile incorporated in, pseudo-static analysis is conducted to estimate maximum moment distribution in pile. It is assumed that the maximum moment is equal to the sum of the two stresses caused by the inertial and kinematic effects if Tb<Tg or the square root of the sum of the squares of the two if Tb>Tg. The estimated pile stresses are in good agreement with the observed ones regardless of the occurrence of soil liquefaction.  相似文献   
6.
We performed two-dimensional spectroscopic observations of the preceding sunspot of NOAA 10905 located off disk center (S8 E36, μ≈0.81) by using the Interferometric BI-dimensional Spectrometer (IBIS) operated at the Dunn Solar Telescope (DST) of the National Solar Observatory, New Mexico. The magnetically insensitive Fe I line at 709.04 nm was scanned in wavelength repetitively at an interval of 37 s to calculate sequences of maps of the line-wing and line-core intensity, and the line-of-sight Doppler velocity at different line depths (3% to 80%). Visual inspection of movies based on speckle reconstructions computed from simultaneous broadband data and the local continuum intensity at 709.04 nm revealed an umbral dot (UD) intruding rapidly from the umbral boundary to the center of the umbra. The apparent motion of this object was particularly fast (1.3 km s−1) when compared to typical UDs. The lifetime and size of the UD was 8.7 min and 240 km, respectively. The rapid UD was visible even in the line-core intensity map of Fe I 709.04 nm and was accompanied by a persistent blueshift of about 0.06 km s−1.  相似文献   
7.
Using long-term sea surface temperature (SST) and acoustic Doppler current profiler (ADCP) data, we examined variations in the current axis of the Tsushima Warm Current (TWC) off the San’in coast of Japan, near the entrance to the Japan Sea. There were large horizontal temperature gradients along the shelf edge in the southwestern Japan Sea from October to May, suggesting that the second branch of the TWC appears not only in spring and autumn but also in winter. From the ADCP data analysis, we found that currents with speeds of approximately 20 cm s?1 and greater appeared around the shelf edge off San’in coast in all seasons. The SST and ADCP data analyses suggested that the second branch of the TWC exists around the shelf edge off the San’in coast throughout the year. This finding differed from those of previous studies. A relatively strong current (speed greater than 15 cm s?1) appeared on the shore side in all seasons, except at line W in winter. This current might be the first branch of the TWC. The first branch seemed to occur around in 100 m isobaths, but shifted northward and southward because the bottom topography around lines W and M was relatively flat and the shelf was broad. The first branch was very obscure, and it was difficult to define the two branches of the TWC off the San’in coast from the seasonally averaged vectors. However, snapshots of current distribution derived from the ADCP data clearly showed these branches. Hence, both the first and second branches might occur throughout the year off the San’in coast.  相似文献   
8.
The search for radio spectral lines from Comet Sugano-Saigusa-Fujikawa (1983e) was conducted using the 45-m telescope of Nobeyama Radio Observatory. The frequency ranges of 44.0–46.0 and 47.5–49.5 GHz were surveyed down to ΔTA1 (rms) = 20–30 mK, with a beam size of ~35 arc sec. Upper limits have been established for spectral lines of atomic hydrogen, CS, OCS, SO2, H2CO, CH3OH, HCCCCCN, HCOOCH3, CH3OCH3, and CH3CH2CN. The J = 5?4 line from HCCCN in the vibrational ground state possibly has been detected but not confirmed. The suggested total amount of HCCCN in the coma is consistent with the possible picture that HCCCN is the main parent molecule of CN.  相似文献   
9.
We investigate the dynamical response, in terms of disc size and rotation velocity, to mass loss by supernovae in the evolution of spiral galaxies. A thin baryonic disc having the Kuzmin density profile embedded in a spherical dark matter halo having a density profile proposed by Navarro, Frenk & White is considered. For the purpose of comparison, we also consider the homogeneous and   r −1  profiles for dark matter in a truncated spherical halo. Assuming for simplicity that the dark matter distribution is not affected by mass-loss from discs and the change of baryonic disc matter distribution is homologous, we evaluate the effects of dynamical response in the resulting discs. We found that the dynamical response only for an adiabatic approximation of mass-loss can simultaneously account for the rotation velocity and disc size as observed particularly in dwarf spiral galaxies, thus reproducing the Tully–Fisher relation and the size versus magnitude relation over the full range of magnitude. Furthermore, we found that the mean specific angular momentum in discs after the mass-loss becomes larger than that before the mass-loss, suggesting that the mass-loss would most likely occur from the central disc region where the specific angular momentum is low.  相似文献   
10.
A rapid reduction in sediment porosity from 60 to 70 % at seafloor to less than 10 % at several kilometers depth can play an important role in deformation and seismicity in the shallow portion of subduction zones. We conducted deformation experiments on rocks from an ancient accretionary complex, the Shimanto Belt, across the Nobeoka Thrust to understand the deformation behaviors of rocks along plate boundary faults at seismogenic depth. Our experimental results for phyllites in the hanging wall and shale‐tuff mélanges in the footwall of the Nobeoka Thrust indicate that the Shimanto Belt rocks fail brittlely accompanied by a stress drop at effective pressures < 80 MPa, whereas they exhibit strain hardening at higher effective pressures. The transition from brittle to ductile behavior in the shale–tuff mélanges lies on the same trend in effective stress–porosity space as that for clay‐rich and tuffaceous sediments subducting into the modern Nankai subduction zone. Both the absolute yield strength and the effective pressure at the brittle–ductile transition for the phyllosilicate‐rich materials are much lower than for sandstones. These results suggest that as the clay‐rich or tuffaceous sediments subduct and their porosities are reduced, their deformation behavior gradually transitions from ductile to brittle and their yield strength increases. Our results also suggest that samples of the ancient Shimanto accretionary prism can serve as an analog for underthrust rocks at seismogenic depth in the modern Nankai Trough.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号