首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
  国内免费   1篇
地球物理   2篇
地质学   3篇
  2019年   1篇
  2014年   1篇
  2009年   2篇
  2004年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
To develop an evidence base to help predict the impacts of land management change on flood generation, four experimental sites were established on improved grassland used for sheep grazing at the Pontbren catchment in upland Wales, UK. At each site, three plots were established where surface runoff was measured, supplemented by measurements of soil infiltration rates and soil and vegetation physical properties. Following baseline monitoring, treatments were applied to two of the plots: exclusion of sheep (ungrazed) and exclusion of sheep and planting with native broadleaf tree species (tree planted), with the third plot acting as a control (grazed pasture). Due to a particularly dry summer that occurred pre‐treatment, the soil hydrological responses were initially impacted by the effects of the climate on soil structure. Nevertheless, treatments did have a clear influence on soil hydrological response. On average, post‐treatment runoff volumes were reduced by 48% and 78% in ungrazed and tree‐planted plots relative to the control, although all results varied greatly over the sites. Five years following treatment application, near‐surface soil bulk density was reduced and median soil infiltration rates were 67 times greater in plots planted with trees compared to grazed pasture. The results illustrate the potential use of upland land management for ameliorating local‐scale flood generation but emphasise the need for long‐term monitoring to more clearly separate the effects of land management from those of climatic variability. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
2.
Proterozoic orogens commonly host a range of hydrothermal ores that form in diverse tectonic settings at different times. However, the link between mineralization and the regional-scale tectonothermal evolution of orogens is usually not well understood, especially in areas subject to multiple hydrothermal events.Regional-scale drivers for mineral systems vary between the different classes of hydrothermal ore, but all involve an energy source and a fluid pathway to focus mineralizing fluids into the upper crust. The Mount Olympus gold deposit in the Proterozoic Capricorn Orogen of Western Australia, was regarded as an orogenic gold deposit that formed at ca. 1738 Ma during the assembly of Proterozoic Australia. However,the trace element chemistry of the pyrite crystals closely resembles those of the Carlin deposits of Nevada,with rims that display solid solution gold accompanied by elevated As, Cu, Sb, Hg, and Tl, surrounding gold-poor cores. New SHRIMP UeP b dating of xenotime intergrown with auriferous pyrite and ore-stage alteration minerals provided a weighted mean~(207) Pb*/~(206) Pb* date of 1769 ± 5 Ma, interpreted as the age of gold mineralization. This was followed by two discrete episodes of hydrothermal alteration at 1727 ± 7 Ma and 1673 ± 8 Ma. The three ages are linked to multiple reactivation of the crustal-scale Nanjilgardy Fault during repeated episodes of intracratonic reworking. The regional-scale drivers for Carlin-like gold mineralization at Mount Olympus are related to a change in tectonic regime during the final stages of the intracratonic 1820 -1770 Ma Capricorn Orogeny. Our results suggest that substantial sized Carlin-like gold deposits can form in an intracratonic setting during regional-scale crustal reworking.  相似文献   
3.
Six samples, including wood and jet-like material from the same mummified wood specimens, together with two ‘true’ jet samples, were studied using pyrolysis gas chromatography–mass spectrometry (Py-GC/MS) to obtain detailed insight into the process leading to the formation of jet. Based on morphological and chemical data obtained, the process of “jetification” is characterised by a rapid change when mummified wood is re-exposed to sunlight and aerobic conditions. The transformation from mummified wood to jet is probably caused by relatively small chemical changes, leading to extra linkages between the phenolic compounds and causing the structure to become much more rigid, which is reflected in increased inertness of the material at the macroscopic level.  相似文献   
4.
The degree of isotopic variation in fossil organic matter renders bulk δ13C signatures strongly influenced by molecular isotopic heterogeneity. For example, in fossil wood the relative abundance of less depleted 13C moieties, i.e. preserved 13C enriched polysaccharides versus the relatively 13C depleted lignin moieties, can be seen to significantly bias δ13Cfossil wood values. Moreover the variation in δ13C values of specific compounds within fossil material are themselves highly variable and reflect the heterogeneity in isotopic values of different carbon atoms within individual compounds. For studies using δ13C values of fossil plant material as proxies (e.g., for δ13Cpalaeoatmosphere, δ13Cbiomass) it is recommended that the biases introduced through molecular heterogeneity, preservation type and taxonomic status of the fossil material are determined initially. Biases inherent in the bulk signature can then be reduced, rendering this value more robust. Alternatively, compound specific stable carbon isotope measurements of individual moieties preserved through geological time might prove to be an alternative proxy for monitoring changes in the bulk δ13C value of the plant and might reveal atmospherically induced trends.  相似文献   
5.
In response to growing concern about impacts of upland agricultural land management on flood risk, an intensely instrumented experimental catchment has been established at Pontbren, a sheep‐farmed headwater catchment of the River Severn, UK. Primary aims are to develop understanding of the processes governing flood generation and the associated impacts of land management practices, and to bridge the gap between process understanding and ability to predict effects on downstream flooding. To achieve this, the experiment is designed to operate at plot (~100 m2), hillslope (~0·1 km2) and small catchment scale (~10 km2). Hillslope‐scale data, from an under‐drained, agriculturally ‘improved’ pasture, show that drain flow is a dominant runoff process. However, depending on antecedent moisture conditions, overland flow may exceed drain flow rates and can be an important contributor to peak flow runoff at the hillslope‐scale. Flow, soil tension data and tracer tests confirm the importance of macropores and presence of perched water tables under ‘normal’ wet conditions. Comparisons of pasture runoff with that from within a 10 year‐old tree shelterbelt show significantly reduced overland flow due to the presence of trees and/or absence of sheep. Comparisons of soil hydraulic properties show significant increases in hydraulic conductivity and saturated moisture content of soil under trees compared to adjacent improved pasture. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号